摘 要:本篇论文首先具体介绍了几种数值积分的方法。由简单的矩形、梯形公式到相对精度较高的辛普森公式,最后引出了牛顿-柯特斯公式。为提高其精度,也采用复化求积公式(包括龙贝格算法)、高斯型求积公式。其中本文着重介绍了牛顿-柯特斯公式、龙贝格算法以及高斯型求积公式。接着为比较这几种方法的精确度及数值的稳定性,采用MATLAB编程分析计算比较各个方法的误差和优缺点。体现了数值积分的方法在MATLAB中的实现对求解实际问题的重要意义。37646 毕业论文关键词:数值积分;牛顿-柯特斯公式;龙贝格算法;高斯型求积公式;MATLAB程序
The theory and its realization in the matlab numerical integral method
Abstract:This paper introduces several methods of numerical integration. A simple formula of rectangular, trapezoidal formula relative to the Simpson formula of higher algebraic accuracy, and finally leads to the Newton Cotes formula. To improve the precision, the complex of the quadrature formula (including Romberg integral algorithm), Gauss integral algorithm. This paper introduces the Newton Cotes formula, Romberg algorithm and Gauss integral formula. Then the precision and accuracy of numerical comparison of these theory, using MATLAB programming analysis calculation method and the advantages and disadvantages of each comparison. The significance embodies a numerical integral method in MATLAB for solving practical problems.
Key words:Numerical integration;Romberg integral algorithm;Newton-Cotes formula; Gauss integral algorithm; The program of MATLAB
目 录