摘 要:等价无穷小是极限中的一个重要概念.在求极限过程中,等价无穷小代换方法是常用的方法之一,正确的使用等价无穷小代换在很多情况下可以简化极限运算.首先介绍了等价无穷小的常见应用,并扩展了常见应用的内容,然后对等价无穷小的推广.66650

毕业论文关键词:等价无穷小,函数,极限,推广,应用

Abstract:Infinitesimal equivalence is an important concept in the limit.In the limit process, equivalent infinitesimal substitution is one of the common methods, the correct use of Equivalent Infinitesimal Substitution can simplify the calculation of limit in many cases. I will introduce the common application of infinitesimal equivalence, and expand the common content of the application, then the promotion of equivalent infinitesimal.

Keywords:infinitesimal equivalence,function,limit,spread,application

目 录

1 引言3

2 等价无穷小的定义和几个命题4

3 等价无穷小在极限中的应用4

4 等价无穷小代换的推广7

5 等价无穷小代换的推广的运用8

6 等价无穷小在求解和差运算的极限8

6.1和差运算中直接等价无穷小代换定理8

6.2和差运算中高阶无穷小忽略定理9

6.3和差运算中等价物无穷小代换定理的推广11

结论12

参考文献13

致谢14

1  引言

   等价无穷小是高等数学的一个重要概念.等价无穷小的基本方法是在求极限过程中,用与其等价的无穷小来替换某些无穷小量因子,以达到简化运算的目的.目前,利用等价无穷小代换求极限的方法,一般的等价无穷小代换我们适用于相乘或者相除,但是这里给它做了一些推广,使用的范围可能更广一些,同时对于等价无穷小的使用,我们还应该注意有些情况下我们是不能使用等价无穷小的,本文也举出了一些例子,同时在本文中我们还对比了使用等价无穷小和用洛必达法则这俩种方法求出的极限,很明显可以看出使用等价无穷小可以方便很多.

2  等价无穷小量的定义和几个命题 

定义   设  , 是自变量x在同一个变化过程中的俩个无穷小量.

1.  如果  =1,则称 和 是等价无穷小量,记为 .

    2.  如果  (  ),则称 和 是同阶无穷小.来~自^优尔论+文.网www.youerw.com/

    3.  如果 = ( ),则称 为k阶无穷小量.

    显然, 关于 的同阶无穷小及k阶无穷小,都可以转化为等价无穷小.即如,

 ,

 = ( ) .

    定理1  设 是等价无穷小, 是同一过程中的等价无穷小,且   ,则 .

    证明         ,

                  

                        .

    定理告诉我们,求俩个(可推广到有限个)变量积的极限时,乘积的极限时,乘积中的无穷小因子,可用与它等价的无穷小去代换,代换后的极限值不变.

上一篇:中学数学教师能力特点调查研究
下一篇:一类广义Dyck路中若干统计量的计数

数形结合在中学数学中的...

论数形结合在中学数学教育中的应用

小学数学教师在学生心目中的形象

向量法在高中数学中的应用矢量法

数据分析在大数据时代的应用

数学语言表达在中学数学...

小学数学课堂提问的有效性研究

ASP.net+sqlserver企业设备管理系统设计与开发

麦秸秆还田和沼液灌溉对...

我国风险投资的发展现状问题及对策分析

张洁小说《无字》中的女性意识

新課改下小學语文洧效阅...

网络语言“XX体”研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

安康汉江网讯

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...