摘要在中学数学中,存在很多种数学思想,毫无疑问,数形结合思想是其中非常重要的一种。它沟通了代数与几何这两大块中学数学的组成部分。在数形结合的思想中,“数”与“形”相互渗透,使形象思维与抽象思维有机的结合起来,达到抽象问题具体化的目的。我们在应用的数形结合思想时,要分析问题中给出的条件的代数意义和几何意义,从而可以描出某些“数”的“形”,再运用“形”来解决有关“数”的问题,使问题变得直观和具体,利用数形之间相互转换,达到化繁为简,化难为易的目的。在接下来的正文中,我将会从7个方面来阐述数形结合这一思想在中学数学中的应用:(1)数形结合思想概述;(2)数形结合思想的地位;(3)数形结合思想的作用;(4)数形结合思想的历史(5)数形结合思想的具体应用(6)数形结合思想在教学中的应用。(7)如何培养学生运用数形结合的能力。72376
Abstract There are many Mathematics thoughts in middle school math。But obviously, number-shape combination is one of the most important。It’s a bridge between geometric and algebra。In the methodology of the combination of number and shape,number and shape interpenetrate to each other,which brings the organic synthesis of imaginary thinking and abstract thinking,thus achieving the goal of making abstract problem specific。During the application of number-shape combination,we need to analyze the algebra and geometry meaning of the conditions given in the questions,then we can portrait the shape of some numbers。Then we can use shape to solve the problem about algebra,making the question more intuitive and specific。Taking advantage of the mutual transition of number and shape,we are able to achieve the goal of making hard things simple and easy。 In the main text,i will from the following several aspects to discussthe the application of number-shape combination in middle school mathematics: (1) the overview of number- shape combination; (2) the position of number-shape combination; (3)the function of number-shape combination; (4)the history of number-shape combination;(5)the concrete application of number-shape combination;(6) the application of number-shape combination in teaching。(7) how to cultivate students' ability to use number-shape combination
毕业论文关键词:中学数学; 数形结合; 应用; 思想方法; 解题; 教学
Keyword:middle school mathematics; number-shape combination; apply; thought; solve problems; teaching
目 录
摘要(3)
Abstract(3)
关键词··(3)
Key words···(3)
1 前言··(5)
2 数形结合思想概述··(5)
3 数形结合思想的地位(5)
4 数形结合思想的作用(6)
5 数形结合思想的历史发展(6)
6 数形结合在中学数学中的具体应用(7)
6。1 数形结合在集合中的应用··(7)
6。1。1 利用韦恩图解答集合问题(7)
6。1。2 利用数轴解答集合问题··(8)
6。2 数形结合在函数中的应用··(9)
6。2。1 数形结合发求函数定义域(9)
6。2。2 数形结合发求函数值域·(10)
6。2。3 数形结合发求函数最值·(12)
6。2。4 数形结合发求函数解析式···(13)
6。2。5 数形结合发求函数零点个数·(14)
6。3 数形结合在不等式中的应用···(15)
6。4 数形结合在解析几何中的应用·(17)