摘要图像去噪算法一直是科学界研究的重要领域,为了对原始图像的增强,需要运用数字图像处理技术,得到我们所需要的信息。而微光图像具有对比度低的特点,噪声对其影响很大,就更依赖滤波算法进行去噪处理。82425
本文主要探究多种微光图像噪声抑制算法,主要有均值滤波、中值滤波、维纳滤波、高斯滤波和非局部均值等。通过对微光图像的成像系统的研究,以及噪声的分析,借助MATLAB的图像处理工具箱,对原始图像进行降噪处理,研究得出各种算法之间的特点。结果表明,高斯滤波对于去除噪声效果很好,但易使图像变得很模糊并且失真度较高。中值滤波和均值滤波可以有效地滤除噪声,缺点同样是牺牲了图像的清晰度。维纳滤波的去噪作用一般,但边缘信息保留很好。非局部均值算法去噪效果不是很明显,但是失真度最低,图像最清晰,显示出在峰值信噪比和视觉质量方面效果显著,但缺点是计算复杂度大大增加,处理时间长。
毕业论文关键词 微光图像 均值滤波 维纳滤波 高斯滤波 非局部均值
毕业设计外文摘要
Title Research on Algorithm of Low Light Image Noise Suppression
Abstract Image denoising algorithm has been an important area of scientific research, in order to enhance the original image, it requires using digital image processing techniques to obtain the information we need。 The low light image has low contrast features and effected by the noise easily。It needs to be filtered more necessarily。
In this article, we do research on a variety of low light image noise suppression algorithms, mainly including the mean filter, median filter, Wiener filter, Gaussian filter, and non-local means。 Based on the study of the imaging system of low light image, and the analysis of the noise, we denoise the original image by using the image processing toolbox of MATLAB and conclude the characteristics of various algorithms。 The results show that Gaussian filter for removing noise effect is very good, but it is easy to cause the image blurred and distortion。 Median filter and mean filter can effectively suppress the noise, however at the expense of the image clarity as well。 Wiener filter make the general effect on the noise, but it is better to reserve the edge information。 Non-local means denoising effect is not obvious, while it is good at the clear image with the minimum distortion degree。 Besides, PSNR and the quality of visual effect is also remarkable。 Otherwise, the disadvantage is that greatly increase the computing complexity and long time to process。
Keywords Low light image, mean filter,Wiener filter,Gaussian filter,non-local means (NLM) algorithm
目 次
1 绪论 1
1。1 课题研究背景 1
1。3 本论文所做的工作 2
2 微光技术 3
2。1 概述 3
2。2 微光图像特征分析 4
2。2。1 微光电视图像的成像 5
2。2。2 微光图像噪声表现特征 6
2。3 图像噪声的基本特性 7
3 图像去噪算法的研究 9
3。1 概述 9
3。1。1 空域图像去噪算法 9
3。1。2 频域图像去噪算法 9
3。2 均值滤波 9
3。3 中值滤波10
3。4 维纳滤波11
3。5 高斯滤波11
3。6 非均值滤波12
4 实验结果与分析14
4。1 图像处理过程14
4。2 源程序14
4。3 实验结果19