设备简介刀库的形式和容量主要是为满足机床的工艺范围,常见的刀库类型如下:(1) 盘式刀库 此刀库结构简单,应用较多。适合立式加工中心。此换刀装置的优点是结构简单,成本较低,换刀可靠性较好,缺点是换刀时间长,适用于刀库容量较小的加工中心上采用。73070
(2) 链式刀库 此刀库结构紧凑,刀库容量较大,链环的形状可根据机床的布局制成各种形状,也可将换刀位突出以便于换刀,能充分利用机床的占地空间,通常为轴向取刀,位置精度较低,造价也较高。适用于卧式加工中心。
(3) 格子箱式刀库 结构紧凑,刀库空间利用率高,换刀时间较长。布局不灵活,通常刀库安装在工作台上,应用者较少。
(4) 直线式刀库 刀库容量少,一般在十几把左右,多用于自动换刀数控车床,钻床上也有采用。
2国内外的发展情况
从换刀系统发展的历史来看,1956年日本富士通研究成功数控转塔式冲床,美国IBM公司同期也研制成功了“APT''(刀具过程控制装置)。1958年美国K&T公司研制出带ATC(自动刀具交换装置)的加工中心。1967年出现了FMS(柔性制造系统)。1978年以后,加工中心迅速发展,带有ATC装置,可实现多种工序加工的机床,步入了机床发展的黄金时代。1983年国际标准化组织制定了数控刀具锥柄的国际标准,自动换刀系统便形成了统一的结构模式。数控机床最早由美国制造出来。从1960年开始,一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。目前,欧、美、日等工业化国家已先后完成了数控机床产业化进程。
美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,网罗世界级人才,特别讲究“效率”与“创新”,注重基础科研。德国一直将机床工业放在重要的战略地位,在多方面给予大力扶植,于 1956 年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。我国数控机床的研究开始于20世纪50年代,直到1980年以前研究水平均较落后。起步晚、水平低,当时部分高等院校和科研单位从电子管起步研制出了实验性样机。这一阶段处于研制开发时期。
我国数控机床产业存在的问题与不足。关键功能元部件还主要依赖进口,技术创新和成果转化与市场需求脱节,缺乏先进的管理机制,在产品的可操作性、外观、内在质量及品牌知名度等方面与发达工业国家相比仍存在很大差距。
近年来自动换刀刀库的发展俨然己超越其为综合切削加工机床配套的角色,在其特有的技术领域中发展出符合机床高精度、高效能、高可靠度及多任务复合等概念之独特产品,以其多样化产品的功能,左右了综合切削加工机床在生产效能及产品精度的表现。其产品的发展趋势为:(1)高效能的产品:发展符合高荷重、高容量、高速化概念的刀库产品。(2)轻量化、低成本的产品,发展符合重量轻、成本低的刀库产品。论文网
目前国内外数控机床自动换刀系统中,刀具、辅具多采用锥柄结构,刀柄与机床主轴的联结、刀具的夹紧放松机构及驱动方式几乎都采用同一种结构模式。在这种模式中,机床主轴常采用空心的带有长拉杆、碟形弹簧组的结构形式,由液压或气动装置提供动力,实现夹紧放松刀柄的动作。利用这种机构夹持刀具进行数控加工的最大问题是,它不能同时获得高的夹持刚度和刀具振摆精度,而且主轴结构复杂,主轴轴向尺寸过大,加上它的液压驱动装置及刀具辅具锥柄的制造成本,使得自动换刀系统的造价在机床整机中占有较大的比重。据有关数据介绍,在刀具采用锥柄夹头、侧压夹头以及弹簧夹头夹紧性能的对比实验中,采用弹簧夹头夹持刀具是唯一可同时获得高的夹持刚度和振摆精度的理想组件。采用这种夹持组件,刀具或刀具辅具可做成圆柱柄,其制造成本低,精度易保证,这对大容量刀库降低刀具辅具的制造成本,意义更为显著。在现代数控机床上亦有采用弹簧夹头作为刀具的夹持组件,但机床的主轴结构、驱动方式仍然采用与上述锥柄刀具完全相同的结构形式。采用这种结构模式,在实际数控加工中,尤其是在需要超高速主轴、主轴的径向、轴向尺寸都很小、没有足够的换刀空间的微细加工场合中实现自动换刀将会是很困难的,如果实施自动换刀那将使机床成本大幅度提高。如在CNC控制磨削球面铣刀的数控磨削机床上,直接由高速电机驱动主轴,使用小直径盘形砂轮和指形砂轮加工球面铣刀,换刀空间很小,在这种条件下,将难以实现自动换刀。国外最新研制的内圆磨床上采用的弹簧夹头自动换刀装置售价昂贵。