摘要在潜艇的发展过程中,潜艇包含了几种不同的舱段,使用节点连接。观察这些连接结点发现,它们可以分解为等厚度柱(锥)壳、变厚度柱(锥)壳等基本结构,所以对锥接头的研究很有意义。本文运用的是有限元法,因为他本身的特性即可以把复杂的结构化为无限个小的简单的单元进行计算分析。从静水压强计算角度出发,对锥接头的静水压力的强度进行计算,建立有限元模型,进行网格的划分和计算,最终通过Von-mises应力图进行分析,探究不同角度的锥接头在50m水深下的强度和相同角度的锥接头在50m、75m、100m水深下的强度。得出结论:不同角度的锥接头在静水压力下的最大应力在接口处,且随角度的逐渐增大,最大应力值也逐渐增加,但不是呈线性变化。圆形接头的应力值各处都不变,且应力值最小。随着水深的增加,锥接头接口处的应力值同倍增加,呈线性变化。86044
毕业论文关键词:锥接头;ANSYS;静水压力;不同水深;不同角度。
Abstract In the development of the submarine, the submarine contains several different cabin, using a connection node。In observation of these connection nodes ,finding they can be pided into equal thickness column (tapered) shell, variable thickness column (cone) housing and other basic structure, so the research of cone joint makes sense。In this paper, the finite element method because of his own characteristics which can putcomplex structure into the infinite small simple unit,then carrying on calculation and analysis。 From the computational point of view of hydrostatic pressure , hydrostatic pressure of a cone joint strength are calculated, and finite element model is established, carrying on grid partition and calculation, finally through the von Mises stress diagram analysis, exploring the strength of different angle cone joint in the 50m depth and the same angle cone joint under 50, 75, 100 m water depth intensity。It is concluded that the maximum stress of different angles of the cone joints at the static water pressure is at the interface, and with the gradual increase of the angle, the maximum stress value also gradually increased, but not a linear change。The stress value of the circular joint is constant, and the stress value is the least。With the increase of water depth, the stress value at the interface of the conical joint is increased with the increase of the same times, which is a linear change。
Keywords: Cone connector; ANSYS; hydrostatic pressure;different water depth; different angles。
目 录
第一章 绪论 1
1。1 研究背景 1
1。3 研究目的与意义 2
1。3。1 研究目的 2
1。3。2研究意义 2
1。4本文的主要工作 3
第二章 静水压力下压强的计算 4
2。1 概念 4
2。2 静水压强的特性 4
2。3 重力作用下静水压强基本方程 6
2。4 等压面 6
2。5 作用在平面上的静水总压力 7
2。6 作用在曲面上的静水总压力 10
第三章 有限元模型的前处理 13
3。1 引言 13
3。2有限元建模