1  高维数据分析模型的研究现状

高维数据的分析越来越受关注。例如,统计处理信号和系统。对繁杂的系统进行统计建模,医疗研究中成分和结构的规律分析,基因表达研究。不定量数据的统计分析。

利用稀疏性特征,对于高维数据的分析,研究者们现阶段的主流做法是将数据降低维度,用低维问题来替换高维问题,从而便于利用已有的办法来解决问题。例如对于某个珍稀动物的具体生理与病理指标,研究者们可以无限地观测和获取,然而现实生活中能够得到的实例极其稀少,研究者们很难获得足够数量的个体作为样本分析,且获取样本进行研究的成本较高。这种情况下,观测数(n)就呈现了远大于变量数()的状况。同时,维数越来越高,各个变量间的关系随之愈加复杂。82576

十二年前,美国国家自然科学基金(National Science Foundation, NSF)的报告预测高维数据分析会成为本世纪统计学的重要前沿研究[6]。这一研究是一个现代统计学科学家面前的巨大挑战,对很多领域的研究都有不可估量的影响。在医学,生物电子领域,都需要在少量样本的条件下进行研究推断。研究者们现今的主要任务就是降维,这也牵涉到模型的选择。而采用算法的类型有别,选取标准不一,输出的结果也各异。论文网

2  正则化估计方法的研究现状

为使可能产生的模型误差尽可能小,初始建模时,会引入一些可能与之相关的变量[7]。而为了使模型的预测精度尽量提高,提高可解释性,需要选择强相关变量[7]。而这个步骤则需要正则化估计方法。目前较流行的正则化方法有经典的变量选择方法、连续缩减的正则化估计方法,以及高维数据挖掘正则化估计的坐标算法[8]。在图像处理和机器学习等领域,正则化稀疏模型都发挥了很大作用。

上一篇:对抗式解码的研究现状和参考文献
下一篇:移动云计算的资源调度算法研究现状

保险中的数学模型国内外研究现状和发展趋势

内聚力模型研究现状

受限空间火灾模型国内外研究现状

管结构碰撞模型试验的研究现状

大数据分析MLCS算法国内外研究现状

话务量预测模型国内外研究现状

灰色多层次综合评价模型研究现状和参考文献

网络语言“XX体”研究

安康汉江网讯

麦秸秆还田和沼液灌溉对...

老年2型糖尿病患者运动疗...

张洁小说《无字》中的女性意识

互联网教育”变革路径研究进展【7972字】

LiMn1-xFexPO4正极材料合成及充放电性能研究

我国风险投资的发展现状问题及对策分析

新課改下小學语文洧效阅...

ASP.net+sqlserver企业设备管理系统设计与开发