摘要波浪补偿系统是一种通过主动或被动技术,对由于波浪运动引起的工作母船或者海洋平台上作业设备的不规则运动进行补偿的系统。本文针对一种新型半潜式海洋钻井平台,结合其波浪补偿运动学模型,开发了适用于该平台的主动波浪补偿控制系统。86133
本文首先对主动波浪补偿系统、操控系统及监测系统程序进行了总体方案设计,并建立了基于主动波浪补偿的液压系统数学模型。在充分考虑比例阀死区对液压缸位置控制效果影响的情况下,对建立的液压系统传递函数采用PID控制器进行仿真与分析,得出其电液比例位置控制系统信号跟踪误差为20%。此外,为了降低建立液压系统传递函数带来的误差,本文在AMESim里对单个液压系统进行仿真,通过使用其模块化建模库,快速得到系统数学模型,分析单个液压缸的响应曲线,得出其信号跟踪误差为11%。在此基础上,本文又在AMESim里面使用反向死区元件对比例阀死区进行补偿,通过仿真分析,得出其信号跟踪误差仅为7%。
最后,本文搭建了主动波浪补偿试验平台,采用经典PID控制器对液压缸进行位置闭环控制,并对比例阀死区进行补偿,经过试验测试,得出其电液比例位置控制稳态误差小于±1mm,其信号跟踪误差仅为10%。此外,通过试验将钻井平台模型上部工作甲板倾角曲线与下船体运动倾角曲线进行对比分析,得出试验模型工作甲板的稳定性提高了70%以上,验证了主动波浪补偿控制系统的正确性。
毕业论文关键词:主动波浪补偿;PID控制器;AMESim;死区;电液比例控制
Abstract Heave compensation system is a system, which compensates the irregular movement of the mother ship or operations in the offshore platform caused by the wave motion with active or passive technology。 In this paper, I aim at a new semi-submersible offshore drilling platform, combined with its compensation kinematic wave model, and develop an active wave compensation control system applied to the platform。
First, this article design the overall program for the active heave compensation system, control system and monitoring system program, and establish a mathematical model based on the hydraulic system of active heave compensation。 In the full account of dead-zone’s effect on hydraulic cylinder position control, this article establish transfer function of the hydraulic system and simulate its transfer function by the PID controller, getting its tracking signals error of electro-hydraulic proportional position control system is 20%。 In addition, in order to reduce the error caused by the establishment of the hydraulic system transfer function, this paper make a simulation on the single hydraulic system in AMESim, by using its modular modeling library and getting the system mathematical model quickly in order to analyzing the response of the single hydraulic cylinder and draw its tracking signal error which is 11%。 On this basis, this paper also use AMESim dead inside reverse element of proportional valve to compensate the dead zone, draw the tracking signal error which is only 7%。
Finally, this paper set up an active heave compensation experiment platform, using classical PID controller to do cylinder position closed-loop control and compensate for the dead zone on proportional valve。 After pilot testing, its electro-hydraulic proportional position control steady-state error is less than ±1mm and its tracking signal error is 10%。 By measuring the deck angle curve on drilling platform topside and comparing with the-lower-hull’s angle curve, this paper draw the working deck’s stability improved by more than 70% and verify the correctness of the active wave compensation control system。
Keywords: PID controller; AMESim; dead zone; Electro-hydraulic proportional; active heave compensation