摘要人工神经网络通过模拟生物神经网络的行为特征实现对信息的处理,是一种高度非线性动力学系统。人工神经网络的高度非线性与混沌密切相关,混沌同步在信号图像处理、保密通信等领域均具有重要应用,因此,对混沌神经网络的同步进行研究。通过将动态误差反馈理论和自适应控制相结合,设计一个简单的自适应控制方案,基于驱动-响应同步法,对于给定的驱动系统构造相应的响应系统,利用同步误差信号构造误差反馈控制器,设计参数自适应律及耦合强度更新规则,实现两个参数不确定的耦合神经网络的同步。此外,系统当中的时滞、随机扰动现象也是导致系统不稳定的主要原因之一,讨论时滞、随机扰动环节下混沌神经网络的同步,保证系统的稳定性。最后,实际的混沌神经网络往往包含多个神经元节点,讨论包含四个节点的情况下神经网络的同步性能。
毕业论文关键词 混沌神经网络 系统同步 Lyapunov稳定性理论 自适应控制律 参数辨识法87430
毕业设计说明书外文摘要
Title Research on Adaptive Synchronization of Chaotic Neural Network
Abstract Artificial neural network can be applied to information processing by simulating the behavioral characteristics of the brain neural network。 It is a highly nonlinear dynamic system。 The highly non-linearity of artificial neural networks is closely related to the chaotic character。 Chaotic synchronization has important applications in signal processing,secure communication and so on。 Therefore, the synchronization of chaotic neural networks is studied。 By combining the dynamic error feedback theory and adaptive control, we design a simple adaptive control scheme。 Based on the drive-response synchronization method, construct a corresponding response system for a given driving system。 Using the synchronous error signal to construct a error feedback controller, and design the parameter adaptive control law and the coupling strength updating rule to realize the synchronization of two coupled neural networks。 In addition, the time delay and stochastic disturbance are the main reasons that lead to instability of the system。 The synchronization of chaotic neural networks with time delay and stochastic disturbance is discussed to guarantee the stability of the system。 In practical applications, chaotic neural networks often contain a number of neurons。 This paper discuss the synchronization performance of the neural network with four nodes。
Keywords chaotic neural network system synchronization Lyapunov theory of
stability adaptive control law parameter identification
目 次
1 引言 1源-于Y优+尔-论.文:网www.youerw.com 原文+QQ7520^18766
1。1 混沌神经网络概述 1
1。2 混沌系统同步控制 5
1。3 论文安排 7
2 一类参数未知的混沌神经网络的同步 9
2。1神经网络模型和预备知识: 9
2。2 数值仿真 12
2。3 本章小结 19
3 一类时变时滞混沌神经网络的同步