In the model test, the test of maneuverability and wave resistance is carried out mainly. The maneuverability test is mainly based on the rotary test, and the rotation diameter and the turning time under different rudder angle and speed is measured. The wave resistance test included the roll and The pitch test and the angular velocity (pitch angle and pitching speed) at different times of the USV are measured using a MTi-G sensor. The data obtained by the experiment are analyzed by the method of system identification. The relevant parameters in the model are identified by establishing the mathematical model of rotation identification, mathematical model of roll and identification and mathematical model of pitching. System identification can not only study the characteristics of USV movement, but also identify the parameters of unmanned boats to provide the necessary basis for performance optimization mathematical model.
Finally, the initial design of the remote system is the use of Team Viewer software remote control function. Users use the Team Viewer software to enter the server using optimization software to complete the optimization operation.
Key words: Optimization algorithm; Optimization mathematical model; System identification; Model test; Remote system
目 录
第一章绪论 1
1.1引言 1
1.2本课题的目的和意义 1
1.4无人艇性能优化研究现状 4
1.5船舶远程系统研究现状 4
1.6本文的主要研究内容 5
第二章优化方法研究 6
2.1引言 6
2.2遗传算法 6
2.2.1遗传算法的基本思想 6
2.2.2遗传算法的特点 8
2.3混沌算法 8
2.3.1经典混沌优化算法的原理介绍 9
2.3.2经典混沌优化算法的特点 10
2.4本章小结 10
第三章无人艇航行性能综合优化数学模型 11
3.1引言 11
3.2快速型优化数学模型 11
3.2.1快速型优化设计变量 11
3.2.2快速性优化目标函数 12
3.2.3快速性优化约束条件 13
3.3操纵性优化数学模型 14
3.3.1操纵性优化设计变量 14
3.3.2操纵性优化目标函数 14
3.3.3操纵性优化约束条件 16
3.4耐波性优化数学模型 16
3.4.1耐波性优化设计变量 16
3.4.2耐波性优化目标函数 16
3.5抗倾覆性优化数学模型 17
3.5.1抗倾覆性优化设计变量 17
3.5.2抗倾覆性优化目标函数 18
3.5.3抗倾覆性优化约束条件 20
3.6性能综合优化总目标函数