摘要:温度控制应用广泛于生活生产的各个领域。温度控制具有时滞大和惯性大特点,它的系统大多是基于PID控制单元的。温控系统的工作性能和使用性能会直接影响生产过程的效率和产品的质量,与企业的经济效益息息相关。74118
本文通过对海内外温控技术发展的回顾,讨论了温度控制对工业的重要性和虚拟仪器技术的巨大发展前景。详细介绍了经典PID控制原理,并将其作为理论基础。以LabVIEW图形化编程语言及其PID调节工具为开发平台,实现了基于串口通信的温度PID控制系统。通过人机操作界面,可实现对系统温度的实时监控和数据记录。和以往的编程语言对比,LabVIEW图形化编程模式可以为开发人员节省80%以上的时间,体现出了极高的效率。本系统各项性能指标都满足了预期的设计要求,具有较好的控温效果和较高的可靠性,同时有着良好的可移植性、通用性和共享性,具有较大的工程实用价值。
毕业论文关键词: 温度控制;PID;串口通信;LabVIEW;人机交互界面
Design of temperature PID control system based on Labview
Abstract: Temperature control applications are widely used in industrial production。 Temperature control has the characteristics of large delay and large inertia。 Most of the temperature control systems are based on PID control。 The performance of the temperature control system will directly affect the efficiency of the production process and the quality of the product, and is closely related to the economic benefits of the enterprise。
This paper discusses the importance of temperature control to industry and the great development prospect of virtual instrument technology by reviewing the development of temperature control technology both at home and abroad。 The classical PID control principle is introduced in detail, and the temperature PID control system based on serial communication is realized by using LabVIEW graphical programming language and PID toolkit as the development platform。 The man-machine interface system has the function of real-time monitoring and recording system temperature data。 LabVIEW graphics programming can save more than 80% of the program development time compared to the traditional programming language, which reflects its very high efficiency。 The performance of the system to meet the expectations of the design requirements, which has a better temperature control effect and high reliability, while a good portability, versatility and sharing, it also has a larger project Practical value。
Key Words: Temperature control; PID; serial communication; LabVIEW; HMI
目录
摘要 i
Abstract ii
1 绪论 1
1。1 课题研究目的及意义 1
1。3 发展趋势 4
1。4 课题的主要研究内容 6
2 PID控制设计 8
2。1 PID控制概述 8
2。2 比例调节器 9
2。3 积分调节器 9
2。4 微分调节器