菜单
  

        设协方差矩阵∑的特征根为l1,l2,…,lp,不妨假设l1³ l2 ³ …³lp>0,相应的单位特征向量为u1,u2,…,up。令
     由前面线性代数定理可知:UTU=UUT=I,且
    而且,当a=u1时,有
                      (2-10)
    因此,a=u1使 达到最大值,且 。
    同理  ,而且
            (2-11)
    上述推导表明:X1,X2,…,Xp的主元就是以∑的特征向量为系数的线性组合,它们互不相关,其方差为∑的特征根。由于∑的特征根l1³ l2 ³ …³lp>0,所以有 。因此,主元的次序是按特征根取值大小的顺序排列的[14]。
    2.4.2  主元的性质
    主元实际上是各原始变量经过标准化变换后的线性组合。作为原始变量的综合指标,各主元所包含的信息相互独立,互不交叉重叠。一般说来,主元具有如下性质:
    (1) 若数据经过标准化处理,则主元的均值为零。
    (2) 主元的方差是所有特征根加起来的和,主元分析是把p个原始变量X1,X2,…,Xp 的总方差分解成为p个不相关的随机变量的方差之和。协方差阵 的对角线上的元素之和等于特征根之和,即
    2.4.3  主元的选取方法
    在解决实际问题时,一般我们并不是像以前分析时取p个主元,而是根据累计贡献率的大小取前m个,从而起到减少文数的目的。
    贡献率:指第i个主元的方差在全部方差中所占比重为 。由于在主元时 ,所以 ,反映了此主元对原来p个指标信息的反映能力和综合能力大小。
    所以,主元 的贡献率为(2-13)
    累计贡献率:前m个主元共有多大的综合能力,用这m个主元的方差和在全部方差中所占比重 来描述。所以,主元 累计贡献率为
    进行主元分析的目的之一是希望用尽可能少的主元 代替原来的p个指标,从而达到数据降文的目的。一般取累计贡献率达85—95%的特征值 所对应的第一、第二,…,第m(m≤p)个主成分。在实际工作及本次课程设计中,主元个数的多少以能够反应原来变量85%以上的信息量为依据,即当前m个主元的累计贡献率 85%就可以了。
    2.5  主元分析法的计算步骤及设计过程
    2.5.1   原始数据
    将原始观察数据组成样本矩阵X(n×p矩阵,n个变量,p个观察值),每一列代表一文数据,每一行代表一个观察样本,前文已经表述过,直接表示如下
  1. 上一篇:TCR-TSC静止无功补偿器的综合补偿特性研究
  2. 下一篇:基于51单片机电子密码锁的设计
  1. 基于oversim的P2P通信仿真系统设计

  2. 基于力控组态软件的PLC系...

  3. 基于SIMATICS7-200的小型锅炉...

  4. 基于Arduino的自动浇花系统设计+电路图+程序

  5. DC-DC基于超级电容的电梯弱电供电系统设计

  6. 基于图像识别的电子锁设计+PCB电路图+程序

  7. 单片机的信号发生器的设计任务书

  8. 中国传统元素在游戏角色...

  9. 巴金《激流三部曲》高觉新的悲剧命运

  10. NFC协议物理层的软件实现+文献综述

  11. 上市公司股权结构对经营绩效的影响研究

  12. C++最短路径算法研究和程序设计

  13. 浅析中国古代宗法制度

  14. 现代简约美式风格在室内家装中的运用

  15. 高警觉工作人群的元情绪...

  16. g-C3N4光催化剂的制备和光催化性能研究

  17. 江苏省某高中学生体质现状的调查研究

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回