摘要为了避免参考面形对绝对表面干涉检测精度的制约,近几年提出了绝对检测的方法,此方法已实现纳米级精度的面形测量。验证各种绝对检测方法的可靠性普遍采用恢复测试平面和测试平面相减的方法,此方法无法绝对证明所选的绝对检测方法的可靠性,本文提出使用非相关误差以印证绝对检测方法的可靠性。光学平面绝对检测实现方法的不同,引入了不同的误差,主要是由于随机噪声、调整误差(旋转误差)镜面变形、温度等引起。本文通过Matlab模拟仿真斜入射绝对检测过程,并使用非相关误差进行分析,通过与理想误差比较,发现非相关误差具有极高的准确性。通过在绝对检测中引入角度误差,发现非相关误差可在一定程度上证明所选绝对检测方法的可靠性。77019
毕业论文关键词 绝对检测 非相关误差 Matlab仿真 斜入射测量
毕业设计说明书外文摘要
Title Research on the control technology of decorrelation residual in the absolute detection of optical plane
Abstract In order to avoid the reference surface to form the absolute surface which may effect the test precision,an absolute detection method is proposed in recent years, which realized the nanoscale surface measurement。Verifying the reliability of the absolute detection method generally used the method of the recovery testing plane and the testing plane by subtracting,which could not absolutely prove the reliability of the absolute method。Using the decorrelation residual in this paper verified the reliability of the absolute detection method。Differences of the optical plane absolute detection method introduced all kinds of error,mainly random noises,adjusting error(rotating error),mirror surface deformation and temperature,etc。In order to reduce the error, by simulating the Skip-flat interferometry using Matlab,this paper analyzed the simulated data through using the decorrelation residual,decorrelation residual has a high accuracy through comparison with the ideal error。Introduced the adjusting error that produced in the process of the Skip-flat interferometry absolute detection due to the rotation angle,decorrelation residual can prove the reliability of this method to a certain extent。
Keywords absolute detection decorrelation residual simulate of MATLAB Skip-flat interferometry
目 次
1 绪论 1
1。1 研究背景 1
1。2 主要研究工作及论文结构安排 3
2 原理 5
2。1 斜入射绝对检测原理 5
2。2 矩阵算法原理 7
2。3 迭代算法原理 9
2。4 绝对检测的非相关误差 10
2。5 本章小结 10
3 绝对检测的模拟仿真 12
3。1 基于矩阵算法的斜入射绝对检测 12
3。2 基于迭代算法的斜入射绝对检测 13
3。3 本章小结 15
4 非相关误差比较分析 16
4。1 非相关误差计算方法选取及论证 16
4。2 矩阵算法 17
4。3 迭代算法 19
4。4 本章小结 20
5 基于非相关误差研究调整误差对绝对检测的影响 22
6 有待解决的问题和前景展望 23
结论 25
致谢 26
参考文献27
附录A 波面模拟算法 29
附录B 矩阵算法 30