Developed cathode material BaCo0.4Fe0.4Zr0.1Y0.1O3-δ, is BCZY new cathode material plus electrolyte made of Co and Fe, zirconium improves the chemical stability of the electrolyte in the atmosphere of CO2 and H2O, and the iron can improve the electron conductivity of the conductor. The first chapter introduces the solid oxide fuel cell works, development, cathode material, as well as requirements for the upgraded version of the proton conductor solid oxide fuel cell works and the cathode material. The main purpose of this paper has been described. Chapter II, in order to carry out the purpose of this paper is to prepare a new cathode material a tight synthesis developed cathode material BaCo0.4Fe0.4Zr0.1Y0.1O3-δ, with BCZY electrolyte match a new cathode material zirconium improves the chemical stability of the electrolyte in the atmosphere of CO2 and H2O, whereas iron can increase the electronic conductivity of the conductor, reducing the coefficient of thermal expansion. Synthesized by the solid phase reaction method of the cathode material is made by sintering a ceramic conductor, conducted the XRD, SEM test, coefficient of thermal expansion test, DC resistance test, differential thermal analysis and testing. The third chapter, by XRD, SEM BaCo0.4Fe0.4Zr0.1Y0.1O3- δ structure and morphology of the samples were characterized in detail. From the measured data can be analyzed, the solid reaction method can be made BaCo0.4Fe0.4Zr0.1Y0.1O3-δperovskite phase cathode material. Test results show that the thermal expansion coefficient of the thermal expansion coefficient of the cathode material is low, by the analysis of the test results that the DC resistance, high conductivity BaCo0.4Fe0.4Zr0.1Y0.1O3- δ cathode material, chemically more stable. So all the experimental results show the potential of the material is relatively large, relatively high value, promises to be the best choice for a solid oxide fuel cell cathode material.
Keywords: solid oxide fuel cell cathode proton conductor
目录
第一章绪论 . 1
1.1 燃料电池 .. 1
1.2 固体氧化物燃料电池概述 2
1.2.1 固体氧化物燃料电池工作原理 2
1.2.2 固体氧化物燃料电池的发展状况.. 2
1.2.3 固体氧化物燃料电池阴极材料 3
1.2.4 固体氧化物燃料电池阴极反应机理. 5
1.3 质子导体燃料电池的应用 6
1.3.1 质子导体燃料电池工作原理 6
1.3.2 质子导体燃料电池的阴极材料 7
1.4 本论文的研究思路与内容 7
第二章实验部分 .. 9
2.1 主要实验仪器 . 9
2.2 实验试剂 .. 9
2.3 固相反应法 9
2.4 粉体合成 . 10
2.5 BaCo0.4 Fe0.4 Zr0.1 Y0.1 O3-Δ阴极材料的表征方法与性能测试 .. 11
2.5.1 XRD测试 .. 11
2.5.2 扫描电镜测试.. 12
2.5.3 热膨胀系数测试. 12
2.5.4 差热分析测试.. 12
2.5.5 DC 电阻测试 13
第三章 BaCo0.4Fe0.4Zr0.1Y0.1O3-Δ阴极材料性能分析 . 14
3.1 热重分析 . 14
3.2 XRD 测试分析 14
3.3 SEM 测试分析 15
3.4 DC 测试分析 . 15
3.5 DIL 测试分析 16
结论 .. 19
致谢 .. 20
参考文献 21
第一章绪论 1.1燃料电池 燃料电池直接把化学能转化为电能, 这种转化装置理论上会把放热性的还原反应和氧化反应分开,经过电路转移电子等,把化学反应释放的能量全部直接性地转为电能。而燃料电池在实际使用中,一般是把氢气、碳水化合物燃料气体和氧气发生化学反应释放出来的能量转化为电能。 燃料电池被认为是一种化学反应装置,由阳极、阴极及电解质组成。燃料电池工作原理为,阳极发生氧化反应,生成的氧离子通过电解质装置进入到阴极,而阴极会发生还原反应,阴极反应物与阳极反应物在阴极发生发应,释放能量,实现供电目的。 与燃料电池相比较而言,燃料电池有与之不一样的优点,理想状态下,燃料电池工作时,把反应释放的吉布斯自由能全都转变为电能,而内燃机能量转变过程较为复杂, 能量损失也比较严重, 从化学能转变为热能, 再从热能转化为机械能,最终把机械能转为电能。所以通过以上比较可知,燃料电池的能源利用率,工作效率都比内燃机高,燃料电池应用价值更大。 BaCo0.4Fe0.4Zr0.1Y0.1O3-阴极材料的合成与电学性能(2):http://www.youerw.com/wuli/lunwen_64002.html