摘要 本文介绍了长波红外消热差系统的形式,分析了温度变化对光学元件的影响,并列出了光学参量随温度变化的公式,总结了红外消热差系统的设计原理,建立了消热差消色差条件方程组,完成了一个大视场红外物镜的消热差设计。该系统工作波段为8~12μm,全视场角为 30°,焦距为 60mm,F数为2。系统采用三片式结构,仅使用了锗和硒化锌两种材料。引入了一个衍射面和一个二次非球面,使结构简单化,轻量化,并很好地提高了成像质量。在﹣40℃~80℃温度范围内利用衍射元件实现了消热差设计,并给出了﹣40℃~80℃下系统的像质评价结果。结果表明,系统在较大视场内成像质量接近衍射极限,且在﹣40℃~80℃温度范围内性能稳定,适用于像元尺寸为 40μm×40μm,像素数为 640×480 的非制冷型凝视焦平面阵列探测器上。60396
毕业论文关键词 红外光学系统;折/衍混合光学系统;消热差
Title Athermalization of LWIR lens
Abstract This paper introduced the forms of athermal LWIR lens, and analysed the effects of optical elements when temperature changed. The equations of optical parameters shift with temperature were surmerised. Three simultaneous equations were solved to derive an achromatic and athermal system. A wide field of view athermalized infrared optical system is introduced. The working wavelength is 8~12μm; the full field of view is 30°; the effective focal length is 60mm; the F number is 2. It consists of a diffraction surface and a aspheric surface with a triplet structure, only using germanium and ZnSe. The system is simple, low mass and high image quality. The evaluation of the system is given in the temperature range of ﹣40℃~80℃. The results show that the hybrid system possesses better athermal performances and high image quality in ﹣40℃~80℃. It is compatible with staring focal plane array which has a format of 640×480 and the pixel pitch of 40μm. Key words Infrared optical system; Binary optics; Athermalization
目录
摘要 .. 1
Abstract .. 2
1 绪论 . 4
1.1 课题背景与选题的意义 . 4
1.2 二元光学的国内外发展概况 .. 5
1.3 消热差技术的国内外发展现状 . 8
1.4 本论文的主要研究内容 .. 10
2 温度对红外光学系统的影响及消热差方法 . 11
2.1 概述 . 11
2.2 温度对光学系统性能的影响 11
2.3 红外光学系统的消热差方法 14
3 衍射光学元件的成像理论和像差分析 17
3.1 衍射元件的像差特性 17
3.1.1 光阑密接于衍射透镜情况下的初级像差 17
3.1.2 光阑不与衍射透镜密接时的初级像差 19
3.2 衍射光学元件的色差研究 . 19
3.2.1 衍射元件的光焦度 .. 19
3.2.2 衍射元件的色散 20
3.2.3 采用衍射元件消色差 . 21
3.3 衍射元件的温度特性 22
4 长波红外消热差透镜设计 .. 25
4.1 材料的选择及确定初始结构 25
4.2 优化设计步骤 27
4.3 像质评价 .. 29 长波红外消热差透镜设计:http://www.youerw.com/wuli/lunwen_65866.html