脉冲压缩技术是大时宽带宽积(TB)信号经匹配滤波实现的,信号由调频或者相位编码获得,不同的信号形式具有不同的压缩性能,但是压缩输出并非理想的单一窄脉冲,除了主瓣之外同时还存在着一些不希望的小峰,即距离旁瓣。这就可能导致在多目标环境中,强回波的旁瓣电平过高而淹没弱回波的主峰,影响系统检测[2]。所以降低脉冲压缩信号的距离旁瓣一直是研究人员关注的课题。一方面致力于波形和编码方法的研究,寻求具有优良的非周期自相关性能的信号;另一方面引入失配滤波器来抑制旁瓣,使信号满足实际需要。8622
二相编码信号作为一种常用的相位编码脉冲压缩雷达信号,由于其自相关函数中旁瓣过高而限制了其实际应用[3]。抑制二相编码信号旁瓣的研究经历了3个过程:
1.采用匹配滤波器级联加权网络:1959年,Key等人较早研究了巴克码的旁瓣抑制技术[4]。他们首先算出巴克码的能量密度谱,然后再计算出旁瓣抑制滤波器的传递函数,这种滤波器容易用抽头延迟线来实现。1971年,Rihaczek和Golden从频域分析入手,设计出了13位巴克码的旁瓣抑制滤波器(即RG滤波器)[5],他们的目的是降低数字处理器的复杂性,在延迟线上只用很少的权重就可达到目的。
2.采用最佳不匹配滤波器:为了继续降低成本和增加滤波器的紧凑性,需要寻求更好的方法来抑制旁瓣;此外,除巴克码以外,其他码型的相位编码信号也需要旁瓣抑制加权。1973 年,Ackroyd和 Ghani 提出了直接设计不匹配滤波器[6],代替匹配滤波器以及加权网络来减小相位编码信号的旁瓣,这种方法的缺点是信号处理器复杂,但对旁瓣抑制来说还是比较新颖的。1977年,Mese和Giuli提出了一种递归线性的最小估计器[7],此估计不需要噪声信号的统计先验知识,当伪随机序列用作编码序列时,估计过程变得特别简单和易于实现,因此特别适合于雷达应用。1980年,Zoraster利用线性规划(LP)技术通过选择合适的参数获得降低二进制编码旁瓣的滤波器权值[8]。线性规划法只适用于双相码,不适用于多相编码。对于双相码,当考虑峰值旁瓣电平时采用LP法的旁瓣抑制的效果要优于最小二乘(LS)法,但考虑积累旁瓣电平或信噪比损失时,前者要比后者差。
3.采用人工神经网络方法:由于雷达接收波形与输出波形之间是一种非线性的映射关系,而神经网络恰好具有很强的非线性映射能力,因此可以利用人工神经网络方法来达到抑制旁瓣的目的。1993年,Kwan和Lee[9][10]将多层前向神经网络用于脉冲压缩。这种方法可以获得40dB的输出信噪比,大大的优于前面介绍的两种方法;此方法还有很好的抗干扰能力,并具有实现速度快,权值可以调整等优点。1995年,Rao和Sridhar[11]提出了基于扩展卡尔曼滤波学习算法的前馈神经网络用于脉冲雷达检测。他们的方法比基于传统的误差反向传播学习算法的神经网络具有更优越的峰值旁瓣比输出。
传统的FIR 数字滤波器一般采用通用的DSP 处理器或者数字信号处理超大规模集成电路实现。这样的设计不够灵活, 很多情况下浪费资源, 并且处理速度不够高。随着现代电子技术的飞速发展,对电子系统的处理能力和体积等的要求也越来越高,低功耗、小体积、实时性已成为电子设备的发展趋势。因此,用硬件实现数字脉压是一种必然,因为它能解决脉压系统的体积、功耗和处理能力等问题,而微电子技术的蓬勃发展也为硬件实现各种信号处理算法提供了强有力的支持。
FPGA是一种可由用户编程来实现所需逻辑功能的数字集成电路器件。最初,FPGA是作为取代传统的数字逻辑控制电路器件而出现的。随着CAD开发工具的日渐完善和FPGA的优良性能日益显露,利用FPGA来实现各种信号处理算法甚至系统已成为一种普遍现象和发展趋势[12]。用FPGA来实现DSP算法具备其特有的优势:首先,FPGA非常适合于各种算术运算,其器件内部的集成电路适合进行加/减法和乘法操作。用FPGA实现DSP算法时,可以充分利用硬件资源,采用并行结构和流水线结构,提高处理能力。如利用FPGA中阵列乘法处理器的分布式算法,可以将数据带宽和通过量提高几个数量级;其次,相对通用数字信号处理器和DSP处理器而言,FPGA可以由设计者根据算法的内在结构设计合适的硬件实现结构,避免前者串行执行指令的低效;另外,相对ASIC而言,采用FPGA能够避免初期巨大的开发投资,同时拥有微处理器的通用性和灵活性。在算法修改时,可以在短时间内就将新算法付诸实施。当然由于FPGA仍然属于通用器件,其实现算法的效率还是要比ASIC低,但其灵活性的优势可以在很大程度上弥补了其缺点。因此利用FPGA完成DSP算法是一种方便、快捷、极具优势的实现方案。 脉冲压缩技术国内外研究现状:http://www.youerw.com/yanjiu/lunwen_7032.html