从上世纪90年代起国外一些学者开始了人脸性别识别问题的研究,他们致力于理解人类判定性别的视觉处理机制,主要采用的是人工神经网络的方法。如Golomb等训练了两层神经元网络SEXNET,用来识别30×30的人脸图像的性别。Cottrell和Metcalfe差不多同时做了类似的实验,他们先对样本进行主分量分析,然后训练BP神经元网络用于识别人脸的表情和性别。Brunelli和Poggio训练了一个HyperBF网络,使用16个几何特征进行性别分类。Tamura等人训练了一个三层BP网络,在8×8的低分辨率人脸图像上取得了93%的分类结果。Abdi等人用RBF网络和一个感知器进行实验,他们比较了基于几何特征和基于像素分布特征的性别识别方法,两者基本达到了相近的准确率。66379
(2)支持向量机算法
Moghaddam等人使用基于RBF核的SVM分类器对21×12的“缩略图”人脸图像进行性别分类,并与一些传统的神经网络方法和线性分类器方法进行了系统的比较,他们发现SVM 的分类效果显著好于其他分类器。实验中使用FERET人脸图像库进行了训练和测试,达到了96.6%的准确率。
(3)基于柔性模型的分类算法论文网
Saatci和Town提出了基于主动表观模型的性别与表情识别方法。他们用AAM提取的特征来训练SVM分类器。他们在AR、IMM和FEEDTUM人脸库上对符合条件的正面图像进行
测试,识别率达到了97.6%。他们还尝试在性别识别之前先用表情识别进行分类,期望能一定程度地提高性别分类的精度,但实验结果却并不理想,识别率不升反降,他们指出可能的原因是训练样本数目太小。
参考文献
[1] B A Golomb, D T Lawrence and T J Sejnowski. SEXNET: A Neural Network identifies sex from human face. Advances in Neural Information Processing Systems. 1991, 572-577.
[2] G W Cottrell, J Metcalfe. EMPATH:Face, emotion and gender recognition using holons. Advances in Neural Information Processing Systems. 1991, 564-771.
[3] Saatci Y., Town C., Cascaded Classification of Gender and Facial Expression using Active Appearance Models, FGR 2006. 2006, 1613052:393-398.
[4] R. Brunelli and T. Poggio. Hyperbf networks for gender classification, DARPA Image Understanding Workshop. 1992, 311-314.
[5] S. H. Tamura, Kawai, and H. Mitsumoto, “Male/Female Identification from 8 x 6 Very Low Resolution Face Images by Neural Network”, Pattern Recognition. 1996, 29(2):331-335.
[6] Abdi H, Valentin D, Edelman B, O'Toole A J, More about the difference between men and women:evidence from linear neural networks and the principal-component approach. Perception. 1995,24(5):539-562.
[7] B.Moghaddam and M. H. Yang. Gender Classification with Support Vector Machines. IEEE Trans.On PAMI. 2002, 24(5):707-711.
[8] G. Shakhnarovich, P. Viola and B. Moghaddam. A Unified Learning Framework for Real Time Face Detection and Classification. IEEE conf. on AFG 2002. 2002.
[9] S. Baluja, H.A. Rowley, Boosting sex identification. performance, International Journal of Computer Vision. 2007, 71(1):111-119.
[10] Costen N. P., Brown M., Akamatsu S., Sparse Models for Gender Classification, Sixth IEEE International Conference on Automatic Face and Gesture Recognition. 2004.
[11] M. Kirby and L. Sirovich, Application of the Karhunen-Loe`ve Procedure for the Characterization of Human Faces, IEEE Trans. Pattern Analysis and Machine Intelligence. 1990, 12(1):103-108.
[12] K. Balci, and V. Atalay, PCA for Gender Estimation: Which Eigenvectors Contribute?, ICPR2002.2002, 3:363-366.
[13] 武勃, 艾海舟, 肖习攀,等. 人脸的性别分类. 计算机研究与发展. 2003, 40(11):1546-1553. 性别识别的研究现状综述:http://www.youerw.com/yanjiu/lunwen_74306.html