摘要本文研究的重点为机组组合问题,其目的是针对在指定周期内,满足系统负荷、备用容量、机组最小运行时间和停机时间等限制,考虑机组启停费用和发电费用特性,确定机组的开停机计划,使周期内发电总费用最小。65569
本文对含风电的日前机组组合问题进行建模研究。针对风功率预测不确定性问题,本文引入风功率预测误差随机变量及其概率密度函数,通过选择合适的置信区间并结合初始风功率预测结果获得了在制定日前计划时风功率的预测值。在此基础之上,通过充分研究一些经典的机组组合问题的解决方案,本文决定采用结合等耗量微增率-迭代法整合离散二进制粒子群优化算法(BPSO)用于解决机组组合问题。BPSO算法用于解决机组启停问题,等耗量微增率-迭代法用于解决经济调度问题。
本文参考相关文献建立出合理的机组组合模型,在此基础上对所建机组组合模型进行测试实验,最后得出结果表明:解决方案接近最优,也完全满足UC问题的约束条件,本文建立的机组组合模型能够根据具体预测信息类型进行机组组合决策。
毕业论文关键词 机组组合问题 风功率预测 等耗量微增率-迭代法 粒子群算法
毕业设计说明书(论文)外文摘要
Title Unit commitment for systems with wind power and economic
dispatch problem research
Abstract
The focus of this paper is to solve the unit commitment problem, which is meeting the system’s load and the reserve capacity and the unit’s minimum run time and down time constraints during a specified period. Considering the cost of unit commitment and power generation cost characteristics, we will determine the off and on plan of the unit at the minimum total cost.
In this paper, we made up a unit commitment model. We decide to use a combination of Lambda-iteration method and discrete binary particle swarm optimization algorithm (BPSO) to solve the unit commitment problem. The BPSO algorithm is used to solve the crew scheduling problem, the Lambda-iteration method is used to solve the problem of economic dispatch.
In this paper, we establish a reasonable unit commitment model, on this basis, we make a test about the unit commitment model, then we get the conclusion that: the solution we get is close to optimal, fully meet the constraints of the UC problem.
Keywords Unit commitment problem Wind power forcast Lambda-iteration method Particle swarm optimization
目 录
1 引言 1
1.1 研究背景[1][2][3] 1
1.2 研究意义[4][5] 2
1.3 研究现状[4][5][6][7][8] 2
1.3.1机组组合问题的相关算法 2
1.3.2机组组合中对风电功率的处理方式 5
1.3.3本文的研究方法 6
1.4 本文内容安排 7
2 机组组合问题建模研究[4][5][15][16][17][18] 8
2.1 机组组合问题简介 8
2.2 机组组合问题解决的前期准备 8
2.3 机组组合问题模型建立 9
2.4 机组组合问题模型中风功率预测误差处理方法 含风电场的电力系统机组组合和经济调度问题研究:http://www.youerw.com/zidonghua/lunwen_73239.html