3.2 汉字特征提取
预处理的最终目的是为了更加方便、准确地进行汉字的特征提取,从而提高汉字识别率。对于汉字,其特征大致分为两类,包括结构特征和统计特征,至今总数己经不下百种。但每种汉字特征的适用环境都有所不同,有的特征在一些情况下有很强的自动纠错能力,但在另外一些情况下却完全失去了效用[8]。例如,汉字特征点特征算法本身是一种比较简单、完善的特征提取算法。在汉字图像满足清晰、无笔画连联、无断笔等细化要求时,是能够完全将汉字的各种特征点位置提取处理的;若汉字图像本身模糊不清,预处理工作也无法达到要求,这样再好的汉字特征点特征提取算法也无法提取正确的汉字特征点特征,已经获得的特征点特征一旦应用到汉字识别系统中去,将会极大地影响整个系统的实用性。针对不同的系统需求,应该选择不同的汉字特征,进行优化特征组合,这样才能达到系统最佳识别效果。所以选择哪种特征,如何组合特征将是汉字特征提取这一部分的重点研究领域。但不得不提到的是,任何一个实用的。识别系统只利用其中部分子空间的信息。由于信息的缺陷,便不可避免地遇到识别“死角”的问题。如下介绍并分析一下常用的一些的可供提取的汉字特征。
(1)结构特征
① 抽取笔画法
抽取笔画法是利用汉字由笔画所构成的特点进行识别,它利用汉字的结构信息来进行汉字的联机识别,在印刷体和脱机印刷体识别中,由于笔画提取的困难,结果不是很理想。
② 松弛匹配法
松弛匹配法是一种基于全局特征的匹配方法,它对输入汉字作多边近似,抽取边界线段,将这些边界线段组成临近线段表,然后用松弛匹配操作,完成边与边的匹配。这种方法利用弹性吸收汉字的变形,一个字只用一个样本。其缺点是操作速度较慢,计算量大。
③非线性匹配法
非线性匹配法是由Tsukumo等提出的,用以解决字形的位移、笔画的变形等现象。此方法试图克服从图形中正确抽取笔画的困难,以提高正确判别的能力。
(2)统计特征
① 特征点法
特征点提取算法的主要思想是利用字符点阵中一些有代表性的黑点(笔画)、白点(背景)作为特征来区分不同的字符。特征点包括笔画骨架线的端点、折点、歧点和交点,汉字的背景也含有一定的区别于其它汉字的信息,选择若干背景点作为特征点,有利于提高系统的抗干扰能力。其特点是能够大大压缩特征库的容量,对于内部笔画粘连字符,其识别的适应性较强、直观性好,但不易表示为矢量形式,匹配难度大,不适合作为粗分类的特征。
② 笔段特征法
汉字是由笔画组成的,而笔画又由笔段组成,笔段可近似为一定方向、长度和宽度的矩形段。利用笔段与笔段之间的关系组成特征对汉字进行识别,受字体和字号的影响小,对于多体汉字的识别获得了良好效果。其缺点是笔段的提取会较为困难,匹配的难度大,抗内部笔画断裂或者粘连能力差。当然,汉字的特征多种多样,各有各的优点、短处和不同的适用范围。选择什么样的特征使得此单分类环节的识别效果达到最佳,选择哪些特征来优化组合来达到整个系统的识别效果达到最佳,这也是设计者需要考虑的因素。 Matlab印刷体汉字识别技术的研究(6):http://www.youerw.com/zidonghua/lunwen_7959.html