sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=±[(1-cosα)/2]^(1/2)(正负由α/2所在象限决定) cos(α/2)=±[(1+cosα)/2]^(1/2)(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=±[(1-cosα)/(1+cosα)]^(1/2) 推导:tan(α/2)=sin(α/2) /cos(α/2)=[2sin(α/4)cos(α/4] /[2cos(α/4)^2 - 1]=sinα/(1+cosα)=(1-cosα)/sinα
半角公式sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=±[(1-cosα)/2]^(1/2)(正负由α/2所在象限决定) cos(α/2)=±[(1+cosα)/2]^(1/2)(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=±[(1-cosα)/(1+cosα)]^(1/2) 推导:tan(α/2)=sin(α/2) /cos(α/2)=[2sin(α/4)cos(α/4] /[2cos(α/4)^2 - 1]=sinα/(1+cosα)=(1-cosα)/sinα相对的倍角公式正弦二倍角公式:sin2α = 2cosαsinα推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价: 1。cos2α = 2(cosα)^2 − 1 2。cos2α = 1 − 2(sinα)^2 3。cos2α = (cosα)^2 − (sinα)^2推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]推导:Cos(2a)=cos(a+a)=cosacosa-sinasina=cos²a-sin²a降幂公式(半角公式):cos^2A=[1+cos2A]/2 sin^2A=[1-cos2A]/2 tan^2A=[1-cos2A]/[1+cos2A]变式:sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4)
中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。
16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。半角公式
从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。半角公式
1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 半角公式:http://www.youerw.com/fanwen/lunwen_179840.html