毕业论文

打赏
当前位置: 毕业论文 > 外文文献翻译 >

牛顿法英文文献和中文翻译

时间:2020-05-24 15:57来源:毕业论文
在5.12.1部分提出的牛顿法可以扩展用于最小化多变量函数。为此,考虑二阶近似的功能f(X)=Xi可以利用泰勒级数展开如下: 是二阶偏导数在点Xi的矩阵(海森矩阵)。为了求f(X)的最小值

 在5.12.1部分提出的牛顿法可以扩展用于最小化多变量函数。为此,考虑二阶近似的功能f(X)=Xi可以利用泰勒级数展开如下:

 是二阶偏导数在点Xi的矩阵(海森矩阵)。为了求f(X)的最小值,我们通过设置方程 (6.95)中偏导数等于零得到: 

由方程(6.96)和(6.95)可得:49614

                                        (6.97)

如果 是非奇异矩阵,方程(6.97)可以得到一个近似(X=Xi+t)如下所示:

                                                                (6.98)

方程(6.95)和(6.98)中的高阶项被省略是用于迭代来寻找最优解X*。

矩阵 是非奇异的,从任何初始点X1开始的序列点X1,X2,...,Xi+1都可证明它是收敛的,因为他们相当的接近最优解X*。可以看出,牛顿法采用了二阶偏导数的目标函数(形式的矩阵 ),因此它是一个二阶方法。

例6.11   牛顿法可以找到一次迭代的最少值。

解决方案:如下列二次函数可知

          f(X) =  XT[A]X+BTX+C

函数f(X) 的最小值如下可得

           f = [A]X+B=0

又如 

           X*=-[A]-1B

对方程(6.98)迭代一次得

          Xi+1=Xi-[A]-1( [A]Xi+B)                          (E1)

其中Xi是整个函数迭代的起点,因此方程(E1)可以简化成

           Xi+1=X*=-[A]-1B

图6.17显示了这个过程。

例6.12 通过设定初始点X1={0,0}可以得到函数 的最小值。

方案如下:   我们通过方程(6.98)找到X2,我们要求得 -1,则

                    =  = 

因此,

           图6.17       函数一次迭代的最小值

例如:

              = = = 

利用方程(6.98)可得:

          X2 = X1 -  -1 = -  = 

接下来我们要判断X2是不是最佳点,如下所示:

            = = = 

如果g2 =0,X2是最佳点。因此,该方法融合了函数的一次迭代。

如果函数f(X)是一个非二次的函数,牛顿法可能有点偏离,它可能收敛到鞍点和相对极大点,这一问题可以通过修改方程(6.98)避免,修改后的方程如下所示:

           Xi+1=Xi+λi*Si=Xi-λi* -1 fi 

λi* 在方向Si =-  fi  上的最小步长,修改过后的方程(6.99)有很多的优点。第一,它可以通过原始的方法以较少的步骤找到最小值。第二,在某些情况下,利用原来的方法可能不收敛,但是通过方程(6.99)可以找到任何情况下函数的最小值。第三,它通常避免收敛到一个鞍点或最高点。这种方法拥有这么多的有点,那么它可以看作是是最好的求最小值的方法。尽管它有如此多的有点,但是由于如下所示的特点,该方法在实践中不是很常用,特点:

1、它需要的是 的矩阵形式;

2、它变得非常困难,有时,无法计算矩阵 的元素;

3、它要求矩阵 反演的每一步; 牛顿法英文文献和中文翻译:http://www.youerw.com/fanyi/lunwen_52657.html

------分隔线----------------------------
推荐内容