[12] CONRAD F. Trends in design of water hydraulics-motion control and open-ended solutions[C]//Proceedings of the 6th JFPS International Symposium on Fluid Power, TSUKUBA, Japan, November 7–10, 2005: 420–431.
[13] LAITINEN L, HEISKANEN K, KAJASTE J, et al. Friction
phenomena in a water hydraulic cylinder at low-pressure levels[C]// Proceedings of the Eighth Scandinavian International Conference on Fluid Power, Tampere, Finland, 2003: 421–431.
[14] TAKAHASHI H, ITO K, IKEO S. Application of adaptive controller to water hydraulic servo cylinder[C]//Proceedings of the 6th JFPS International Symposium on Fluid Power, TSUKUBA, Japan, November 7–10, 2005: 432–436.
[15] MAJDIC F, PEZDIRNIK J, KALIN M. An analytical comparison of hydraulic systems based on water and on oil[C]//Proceedings of the 7th JFPS International Symposium on Fluid Power, TOYAMA, Japan, September 15–18, 2008: 679–684.
[16] LIU S J, LIN S P. Study of ‘fingering’ in water assisted injection molded composites[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36: 1 507–1 517.
[17] LI C T, SHIN J W, ISAYEV A I. Primary and secondary gas penetration during gas-assisted injection molding, part II: simulation and experiment[J]. Polymer Engineering and Science, 2004, 44(5): 983–991.
[18] XIN Yong, RUAN Xueyu, HE Chenghong, et al. Study on numerical simulation of cavity filling in gas-assisted injection molding[J]. Chinese Journal of Mechanical Engineering, 2003, 39(4): 112–115. (in Chinese)
[19] POLYNKIN A, PITTMAN J F T, SIENZ J. Gas assisted injection molding of a handle: three-dimensional simulation and experimental verification[J]. Polymer Engineering and Science, 2005, 45(8): 1 049–1 058.
[20] POLYNKIN A, PITTMAN J F T, SIENZ J. Industrial applications of gas assisted injection moulding: numerical prediction and experimental trials[J]. Plastics Rubber and Composites, 2005, 34(5–6): 236–246.
[21] OLLEY P, MULVANEY-JOHNSON L, COATES P D. Non-
isothermal experimental and simulation study of residual wall thickness in gas assisted injection moulding[J]. Plastics Rubber and Composites, 2006, 35(2): 47–58.
[22] QUAN Lingxiao, KONG Xiangdong, GAO Yingjie, et al. Theory and experiment of accumulator absorbing pressure pulsation without regard to its entrance characteristics[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9): 28–32. (in Chinese)
[23] ZHANG Zengmeng, ZHOU Hua, GAO Yuan’an, et al. Simulation and experiment on static characteristic of water hydraulic proportional pressure relief valve[J]. Journal of the China Coal Society, 2009, 34(11): 1 569–1 573. (in Chinese)
摘要:水辅助注射成型,用空心型材去做模具塑件是一个创新的过程,特征包括:间歇, 周期循环,压强大和流量不停变化。节能和喷油压力控制不可基于常规阀控制系统的实现。此 外,注射水不能由水液压比例控制系统直接提供。电流试验中发现,通过压缩空气来注射水, 效率和控制能力较差。在本文中,一种新型的水液压系统已经形成,并应用于蓄能器的节能。 并且提出了采用压力缸和水压比例溢流阀的新型压差控制方法实现背压控制。针对调节注水压论文网
力线性控制器的设计,也提出了一种线性负荷模型,通过计算流体力学模型对两相流腔充填过 程的计算,进行了仿真温度和粘度分析,压力控制系统的线性模型的建立和水液压系统的负载 模型和线性化组分。根据仿真模型,提出了基于模型的反馈补偿方法,以补偿压力减小蓄能器 的排出并消除系统的导数。同时,稳态误差可以通过对带积分补偿的负载压力闭环控制来降低, 可以提高抗干扰能力。通过浙江大学流与国家控制的重点实验室开发的流体动力传动实验系统 对水工比例溢流阀的特性进行了测试,并对该系统的输出压力控制进行了研究,丁二烯-苯乙 烯(的)零件成型试验进行研究。实验结果表明,死区和水液压比例滞后在溢流阀中比较大, 但控制精度和线性度可以提高前馈补偿。随着注水压力控制实验结果的产生,这种热系统的适 用性验证了其线性控制器的效果。新提出的方法和输出压力控制特性的研究控制系统有助于应 水辅助注塑系统英文文献和中文翻译(12):http://www.youerw.com/fanyi/lunwen_79660.html