摘要中空核壳纳米粒子由于其具有独特的中空结构,近年来在纳米反应器和吸附分离等领域中得到了广泛的研究与应用。本论文考察了四氧化三铁@碳(Fe3O4@C)中空核壳纳米粒子作为纳米反应器对水中的酚类污染物的催化降解性能,同时研究了其对亚甲基蓝的吸附效果。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、氮气吸附/脱附曲线等对Fe3O4@C 中空核壳纳米粒子的形貌,微观结构,比表面积等进行了表征。结果显示, Fe3O4@C中空核壳纳米粒子具有较大的中空空腔、多孔的碳壁、具有保护功能的壳层、磁性内核等新奇的结构特点。在此基础上,讨论了在不同反应条件下(温度、浓度、投加量、pH)Fe3O4@C中空核壳纳米反应器活化过硫酸盐对苯酚催化降解的影响。Fe3O4@C中空核壳纳米反应器的结构增强效应使其对苯酚表现出了良好的催化降解性能。此外,亚甲基蓝的吸附实验结果表明, Fe3O4@C中空核壳纳米粒子对碱性染料具有良好的吸附性能。以上结果显示,此类磁性中空核壳纳米粒子有望在环境催化及吸附领域发挥重要作用。
关键词 中空核壳纳米粒子 纳米反应器 催化降解 吸附.27665
毕业设计说明书(毕业论文)外文摘要
Title Synthesis of magnetic Fe3O4@C Yolk-Shell Nanoreactors and Its Performance Study
Abstract
Yolk-shell nanoparticles (YSNs) have attracted significant attention in the field of nanoreactor and the adsorption separation due to its unique hollow structure. In this work, Fe3O4@C YSNs was employed as nanoreactors for catalytic degradation of phenol in aqueous solution. In addition, the adsorption performance of methylene blue by using Fe3O4@C YSNs as an adsorbent was also demonstrated. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nitrogen adsorption-desorption results indicated that Fe3O4@C YSNs possessed distinctive structures, including large hollow cavity, porous and protective carbon shells and magnetic cores. On this basis, the effect of different reaction conditions (temperature, concentration, investment dosage, pH) on the catalytic degradation of phenol was further discussed. Fe3O4@C YSNs showed excellent catalytic performance for phenol removal, which may be ascribed to the structure-enhanced effect. In addition, the methylene blue adsorption experiments indicated that the as-synthesized Fe3O4@C presented favorable adsorption property. Therefore, it can be anticipated that this kind of magnetic yolk-shell nanoparticles will play an important role in the field of environmental catalysis and adsorption.
Keywords: Yolk-shell nanoparticles, nanoreactor, catalysis and degradation, adsorption.
目 次
1 绪论 1
1.1 中空核壳纳米粒子 1
1.1.1 中空核壳纳米粒子的研究现状 1
1.1.2 中空核壳纳米粒子的制备方法 1
1.1.2.1 选择性刻蚀 1
1.1.2.2 软模板装配法 2
1.1.2.3 瓶中造船法 2
1.1.2.4 奥斯特瓦尔德熟法 2
1.1.2.5 电置换法 3
1.1.2.6 柯肯达尔效应 3
1.1.3 中空核壳纳米粒子的应用 3
1.1.3.1 纳米反应器 3
1.1.3.2 药物传递工具 4
1.1.3.3 锂电池电极 4
1.2 四氧化三铁(Fe3O4)纳米粒子 5
1.2.1 Fe3O4纳米粒子的制备 5 Fe3O4/C磁性中空核壳纳米反应器的制备及其性能研究:http://www.youerw.com/huaxue/lunwen_22203.html