摘要本文利用二氰二胺(C2H4N4)与氧化石墨烯(GO)通过原位聚合反应,制备了不同配比的共价键键合的氮化碳-石墨烯纳米复合材料,并对其进行了结构与形貌的表征,在此基础上研究了该复合材料的形成机理:
首先GO上的环氧基团与C2H4N4发生亲核取代反应,形成通过C-N共价键连接的C2H4N4-GO化合物,在高温下C2H4N4原位聚合形成g-C3N4,GO也发生热还原,从而形成共价键合的g-C3N4-rGO。33996
将g-C3N4-rGO作为锂离子电池负极材料,在100 mA•g-1的电流密度下进行50次循环后,可逆充放电容量达到1525 mA•h•g-1;即使在1000 mA•g-1的大电流密度下,仍有943 mA•h•g-1的可逆容量。
此外,利用水热法制得铁酸镍/石墨烯/氮化碳三元纳米复合材料,为进一步深入探索氮化碳-石墨烯复合材料体系奠定了基础。
关键词 氮化碳 石墨烯 协同效应 锂离子电池
毕业论文设计说明书外文摘要
Title Study on preparation and properties of carbon nitride/ graphene nanocomposite by in situ polymerization
Abstract
In this paper, the covalently coupled hybrid of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio was prepared via in situ polymerization approach. Based on the analysis of the structure and morphology of the composites, the formation mechanism can be explained:
The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via covalent C-N bond, then both the in situ polymerization of C2H4N4 and thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO.
The lithium-storage performance of g-C3N4-rGO as the anode material for lithium-ion batteries has been studied. The g-C3N4-rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA•h•g-1 at a current density of 100 mA•g-1 after 50 cycles. Even at a large current density of 1000 mA•g-1, a reversible capacity of 943 mA•h•g-1 can still be retained.
Besides, nickel ferrite/graphite/carbon nitride nanocomposites have been prepared by hydrothermal method and characterized.
Keywords carbon nitride graphene concerted effects lithium-ion batteries
目 次
1 引言 1
1.1 石墨烯概述 1
1.1.1 石墨烯的制备方法 2
1.1.2 原位聚合法制备石墨烯/聚合物复合材料 2
1.2 氮化碳概述 3
1.2.1 氮化碳的制备方法 4
1.3 锂离子电池简介 4
1.3.1 锂离子电池的结构和工作原理 4
1.3.2 锂离子电池负极材料 5
1.4 本文的研究思路和内容 6
2 氮化碳-石墨烯纳米复合材料的制备 8
2.1 实验药品 8
2.2 测试仪器 8
2.3 实验制备方法 9
2.3.1 氮化碳的制备 9
2.3.2 氮化碳-石墨烯二元纳米复合材料的制备 9
2.3.3 铁酸镍/石墨烯/氮化碳三元纳米复合材料的制备 9
2.3.4 锂离子电池的组装 10
3 氮化碳-石墨烯纳米复合材料的表征与储锂性能研究 11
3.1 氮化碳-石墨烯纳米复合材料的结构与形貌 11
3.1.1 红外分析 11
3.1.2 核磁共振分析 12
3.1.3 X射线衍射光谱分析 13 原位聚合氮化碳-石墨烯纳米复合材料及其性能研究:http://www.youerw.com/huaxue/lunwen_31347.html