1.3.2 发展趋势
根据合成氨技术发展的情况分析,估计未来合成氨的基本生产原理将不会出现原则性的改变,其技术发展将会继续紧密围绕“降低生产成本、提高运行周期,改善经济性”的基本目标,进一步集中在 “大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发[4]。
大型化、集成化、自动化,形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向[5]。单系列合成氨装置生产能力将从2000t/d提高至4000~5000t/d。以天然气为原料制氨吨氨能耗已经接近了理论水平,今后难以有较大幅度的降低,但以油、煤为原料制氨,降低能耗还可以有所作为。
在合成氨装置大型化的技术开发过程中,其焦点主要集中在关键性的工序和设备,即合成气制备、合成气净化、氨合成技术、合成气压缩机[6];在低能耗合成氨装置的技术开发过程中,其主要工艺技术将会进一步发展;实施与环境友好的清洁生产是未来合成氨装置的必然和惟一的选择。生产过程中不生成或很少生成副产物、废物,实现或接近“零排放”的清洁生产技术将日趋成熟和不断完善;提高生产运转的可靠性,延长运行周期是未来合成氨装置“改善经济性、增强竞争力”的必要保证。有利于“提高装置生产运转率、延长运行周期”的技术,包括工艺优化技术、先进控制技术等将越来越受到重视。
1.4 变换工艺介绍
1.4.1 中温变换工艺
中温变换工艺早期均采用常压,经节能改造,现在大都采用加压变换。加压中温变换工艺主要特点是:采用低温高活性的中变催化剂,降低了工艺上对过量蒸汽的要求;采用段间冷激降温,减少了系统的热负荷和阻力,减小外供蒸汽量;合成与变换,铜洗构成第二换热网络,合理利用热能。其中有两种模式,一是“水流程”模式,二是“汽流程”模式。前者指在合成塔后设置水加热器以热水形式向变换系统补充热能,并通过变换工段设置的两个饱和热水塔使自产蒸汽达到变换反应所需的汽气比。后者在合成塔设后置式锅炉或中置式锅炉产生蒸汽供变换用,变换工段则设置第二热水塔回收系统余热供精炼铜液再生用;采用电炉升温,革新了变换工段燃烧炉升温方法,使之达到操作简单、平稳、省时、节能效果。
1.4.2 中串低变换工艺
所谓中温变换串低温变换流程,就是在B107等Fe-Cr系催化剂之后串入Co-Mo系宽温变换催化剂[1]。由于宽变催化剂的串入,操作条件发生了较大的变化。一方面入炉的蒸汽比有较大幅度的降低;另一方面变换气中的CO含量也大幅度降低。由于中变后串了宽变催化剂,使变换系统便于操作,也大幅度降低了能耗。根据催化剂低温性能,低变炉入口温度可控制在180~230℃。这样,由于催化剂终态温度降低,可以减少蒸汽添加量,达到节能的效果。另外,由于变换效率的提高,合成氨产量可以相对增加。与中变流程相比,中串低工艺蒸汽消耗下降,饱和塔负荷减轻。
1.4.3 中低低变换工艺
中低低流程是在一段铁铬系中温变换催化剂后直接串二段钴钼系耐硫变换催化剂,利用中温变换的高温来提高反应速率,脱除有毒杂质,利用两段低温变换提高变换率,实现节能降耗。这样充分发挥了中变催化剂和低变催化剂的特点,实现了最佳组合,达到了能耗低、阻力小、操作方便的理想效果。该流程与中变串低变相比,关键是增加了第一低变,填补了280~250℃这一中变串低变所没有的反应温区,充分利用了低变催化剂在这一温区的高活性。比全低变工艺操作稳定在于中低低工艺以铁铬系中变催化剂为净化剂,过滤煤气中氧和油污,起到了保护钴钼系耐硫催化剂的作用。源:自*优尔~·论,文'网·www.youerw.com/ 年产23万合成氨变换工段工艺设计 (4):http://www.youerw.com/huaxue/lunwen_67903.html