基于opencv的人脸匹配考勤系统设计(4)_毕业论文

毕业论文移动版

毕业论文 > 计算机论文 >

基于opencv的人脸匹配考勤系统设计(4)


(4)    opencv人脸识别考勤系统的必要性
随着科技的发展,智能化的考勤系统在企事业单位越来越被广泛使用,尤其是基于人体生物特征识别的考勤系统更是研究的热点。严格规范的员工考勤管理是现代企事业单位提高管理效益的重要保证, 而传统的以打卡、刷卡为代表的考勤产品,存在着替代打卡,效率低下,不易统计,管理和使用文护成本高等弊端。
人脸识别技术是基于人的脸部特征,对输入的人脸图象或者视频流。首先判断其是否存在人脸,如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。本系统利用opencv图像处理系统实现人脸的识别以及匹配功能,利用数据库输入实现考勤时间的录入,利用JSP网页版考勤系统实现员工考勤情况的编辑记录,进一步优化了利用指纹或者是打卡形式进行考勤的企业考勤形式,使得考勤更加方便快捷。
人脸识技术中被广泛采用的区域特征分析算法,它融合了计算机图形处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模版与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。
(5)    目前国内外关于人脸识别考勤的发展情况
现在人脸识别技术已经应用在许多领域中,并起到了举足轻重的作用,人脸识别研
究开始于1966年PRI的Bledsoe的工作,经过三十多年的发展,人脸识别技术取得了长足的进步, 现在就目前国内外的发展情况来进行展述。
A    国外的发展概况
见诸文献的机器自动人脸识别研究开始于1966年PRI的Bledsoe的工作,1990年日本研制的人像识别机,可在1秒钟内中从3500人中识别到你要找的人。1993年,美国国防部高级研究项目署 (Advanced Research Projects Agency)和美国陆军研究实验室(Army Research Laboratory)成立了Feret(Face Recognition Technology) 项目组,建立了feret 人脸数据库,用于评价人脸识别算法的性能。
美国陆军实验室也是利用vc++开发,通过软件实现的,并且FAR为49%。在美国的进行的公开测试中,FAR,为53%。美国国防部高级研究项目署,利用半自动和全自动算法。这种算法需要人工或自动指出图像中人的两眼的中心坐标,然后进行识别。在机场开展的测试中,系统发出的错误警报太多,国外的一些高校(卡内基梅隆大学(Carnegie Mellon University)为首,麻省理工大学(Massachusetts Institute of Technology )等,英国的雷丁大学(University of Reading))和公司(Visionics 公司Facelt 人脸识别系统、Viiage 的FaceFINDER 身份验证系统、Lau Tech 公司Hunter系统、德国的BioID 系统等)的工程研究工作也主要放在公安、刑事方面,在考试验证系统的实现方面深入研究并不多[1]。
B     国内的发展概况
 人脸识别系统现在在大多数领域中起到举足轻重的作用,尤其是用在机关单位的安全和考勤、网络安全、银行、海关边检、物业管理、军队安全、智能身份证、智能门禁、司机驾照验证、计算机登录系统。我国在这方面也取得了较好的成就,国家863项目“面像检测与识别核心技术”通过成果鉴定并初步应用,就标志着我国在人脸识别这一当今热点科研领域掌握了一定的核心技术。北京科瑞奇技术开发股份有限公司在2002年开发了一种人脸鉴别系统,对人脸图像进行处理,消除了照相机的影响,再对图像进行特征提取和识别。这对于人脸鉴别特别有价值,因为人脸鉴别通常使用正面照,要鉴别的人脸图像是不同时期拍摄的,使用的照相机不一样。系统可以接受时间间隔较长的照片,并能达到较高的识别率,在计算机中库藏2300人的正面照片,每人一张照片,使用相距1--7年、差别比较大的照片去查询,首选率可以达到50%,前20张输出照片中包含有与输入照片为同一人的照片的概率可达70% 。 2005年1月18日,由清华大学电子系人脸识别课题组负责人苏光大教授主持承担的国家"十五"攻关项目《人脸识别系统》通过了由公安部主持的专家鉴定。鉴定委员会认为,该项技术处于国内领先水平和国际先进水平[2]。 (责任编辑:qin)