通讯中的数据信号的编码和调制方法定义为:
(1) 阅读器到应答器之间的通讯传输阅读器发送的数据采用ASK(调制载波幅度)进行调制,调制深度是30%(误差不超过3%);数据编码采用脉冲宽度编码(PIE)来编码数据。即通过定义下降沿之间的不同宽度来表示不同数据信号。
(2) 应答器到阅读器之间的传输连接应答器通过反向散射给阅读器来传输信息;数据编码采用FMO编码,数据速率是40kbps。
(3) 防冲突采用时隙ALOHA算法。
Type B协议和Type A协议在很多领域都是相似的:
(1) 阅读器到应答器之间的通讯采用的调制方式也是ASK,而调制深度为30.5%或者100%;编码方式为FM0。
(2) 应答器到阅读器之间的传输采用反向散射的方式将调制的信息回传给阅读器,调制方式为ASK;编码方式为FM0。
(3) 防冲突采用自适应二进制树算法。
关于ISO/IEC18000-6TypeA 和Type B 协议的指令帧格式及状态转换本文不做讨论。
2.2 ISO/ICE18000-6 TypeC介绍
本文主要讨论的系统是基于ISO/IEC18000-6TypeC 协议下的,Type C 协议的通讯机制也是基于一种“阅读器先发言”的,即基于阅读器的命令与应答器的回答之间交替发送的机制。下面将就射频通讯格式、指令帧格式、状态图、防冲突机制和指令集及其分类四个方面进行详细的讨论。ISO 18000-6标准采用物理层( Signaling) 和标签标识层两层分层结构,如图所示。其中物理层主要涉及到RFID频率、数据编码方式、调制格式、RF 包络形状及数据速率等问题; 标签标识层主要处理阅读器读写标签的各种指令。电子标签从阅读器发出的电磁波中获取能量,阅读器通过调制发送的载波给标签发送信息,并且给标签发送无调制的载波并通过接收标签的后向散射获取标签返回的信息。由此可见,阅读器和电子标签之间的通信是半双工的,标签在后向散射的时候不获取阅读器的指令。由于是短距无线通信,为了使得标签解调的方便,阅读器到标签之间的通信方式主要是幅度调制,而电子标鉴的后向散射是通过调制阅读器的无调制载波来返回信息,主要的调制方式是幅度调制或者是相位调制。
2.3 射频通讯格式
(1) 数字调制方法简介
在实际的通信系统中,很多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。由于正弦信号形式简单,便于产生及接收,大多数数字通信系统中都采用正弦信号作为载波,即正弦载波调制。数字调制技术是用载波信号的某些离散状态来表示所传送的信息,在接收端也只要对载波信号的离散调制参量进行检测。数字调制信号,在二进制时有振幅键控(ASK)、移频键控(FSK)和移相键控(PSK)三种基本信号形式。
(2) 读写器到射频卡端通信
① 射频载波调制
射频载波调制采用DSB-ASK、SSB-ASK或PR-ASK调制方式进行通信。
② 基带编码格式
ISO/IEC 1 8000-6C协议的基带数据发送采用PIE编码格式。Tari为询问机对对标签发信的基准时间间隔,是数据-0的持续时间。高位值代表所发送的CW,低位值代表减弱的CW。所有参数的公差应为+/-1%。
(3) 射频卡到读写器端通信
① 射频载波调制
射频载波调制采用反向散射调制(Back Scatter Modulation)。从传统意义的定义上来说,无源的电子标签(Tag)并不能称为发射机。这样,整个系统只存在一个发射机,却完成了双向的数据通信。反向散射调制技术是指无源RFID电子标签将数据发送回读写器所采用的通信方式。根据要发送的数据的不同,通过控制电子标签的天线阻抗,使得反射的载波幅度产生微小变化,这样反射的回波的幅度就携带了所需传送的数据。这和ASK调制有些类似。控制电子标签天线阻抗的方法有多种,都是基于一种称为“阻抗开关”的方法,即通过数据变化来控制负载电阻的接通和断开,那么这些数据就能够从标签传输到读写器。另外反向散射调制之所以可以实现的一个条件是读写器和射频标签之间的通信是基于“一问一答”,阅读器先发言的方式,这种通信方式为:只有当读写器发送完命令后,标签才做出响应,另外当读写器发送完命令后仍然发送载波,反向负载调制正是对该载波信号进行调制。 RFID接收模块设计仿真+文献综述(5):http://www.youerw.com/tongxin/lunwen_10027.html