语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理。而且,语音合成的音质好坏,语音识别率的高低,也都取决于对语音信号分析的准确性和精确性。因此语音信号分析在语音信号处理应用中具有举足轻重的地位。
根据所分析出的参数的性质的不同,可将语音信号分析分为时域分析、频域分析、倒频域分析等;时域分析方法具有简单、计算量小、物理意义明确等优点,但由于语音信号最重要的感知特性反映在功率谱中,而相位变化只起着很小的作用。
FFT即为快速傅利叶变换,是离散傅利叶变换的快速算法,它是根据离散傅;利叶变换的奇、偶、虚、实等特性,对离散傅利叶变换的算法进行改进获得的。
(2) 语音信号的时域分析技术
语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且也是最直观的是它的时域波形。语音信号本身就是时域信号,因而时域分析是最早使用,也是应用最广泛的一种分析方法,这种方法直接利用语音信号的时域波形。时域分析通常用于最基本的参数分析及应用,如语音的分割、预处理、大分类等。这种分析方法的特点是:a)表示语音信号比较直观、物理意义明确;b)实现起来比较简单、运算且少;c)可以得到语音的一些重要的参数;d)只使用示波器等通用设备,使用较为简单等。
语音信号的时域参数有短时能量、短时过零率、短时白相关函数和短时平均幅度差函数等,这是语音信号的一组最基本的短时参数,在各种语音信号数字处理技术中都要应用。
(3) 短时分析技术
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。利用短时平均过零率还可以从背景噪声中找出语音信号,可用于判断寂静无声段和有声段的起点和终点位置。在孤立词的语音识别中,必须要在一连串连续的语音信号中进行适当分割,用以确定一个一个单词的语音信号,即找出每一个单词的开始和终止位置,这在语音处理中是一个基本问题。此时,在背景噪声较小时用平均能量识别较为有效,而在背景噪声较大时用平均过零率识别较为有效。但是研究表明,在以某些音为开始或结尾时,只用其中一个参量来判别语音的起点和终点是有困难的,必须同时使用这两个参数。
(4) 语音信号的频域分析技术
语音信号的频域分析就是分析语音信号的频域持征。从广义上讲,语音信号的频域分析包括语音信号的频谱、功率谱、倒频谱、频谱包络分析等,而常用的频域分析方法有带通滤波器组法、傅利叶变换法、线件预测法等几种。本文介绍的是语音信号的傅利叶分析法。因为语音波是一个非平稳过程,因此适用于周期、瞬变或平稳随机信号的标准傅利叶变换不能用来直接表示语音信号,而应该用短时傅利叶变换对语音信号的频谱进行分析,相应的频谱称为“短时谱 ”。
(5) 语音信号的语谱图分析
语音的时域分析和频域分析是语音分析的两种重要方法。显然这两种单独分析的方法均有局限性:时域分析对语音信号的频率特性没有直观的了解;而频域分析出的特征中又没有语音信号随时间的变化关系:语音信号是时变信号,所以其频谱也是随时间变化的。但是由于语音信号随时间变化是很缓慢的,因而在一段短时间内(如10~30ms之间,即所谓的一帧之内)可以认为其频谱是固定不变的,这种频谱又称为短时谱。短时谱只能反映语音信号的静态频率特性,不能反映语音信号的动态频率特性。因此,人们致力于研究语音的时频分析特性。 MatLAB的语音采集和分析程序设计(3):http://www.youerw.com/tongxin/lunwen_11762.html