摘要光致聚合材料是新型光学元件的开发利用,在多功能全息存储材料以及数据存储设备方面的重要候选材料。对于这些正在进行的应用,该存储材料必须进行优化,以在低散射下获得最大衍射效率。其储存能力仍在持续不断的研究,因为它们存储能力低损失,体全息光栅的衍射效率高。这些自加工的材料廉价,并提供适合于商业用途的特性。对于实际全息应用,如数据存储,高空间频率响应的材料是必要的。因为高空间频率,决定分辨率和数据存储能力。光致聚合反应是活性中心从增长链转移到另一分子的过程。链转移剂可以使增长着的大分子链失去活性,形成稳定大分子,从而降低分子链的平均长度及其形态的分布。而通过研究发现,聚合物链长度的减少会降低聚合物链的非局域,从而提高材料的空间频率响应。因此,本文将重点介绍光致聚合反应及全息系统搭建,以及链转移剂对光致聚合材料的影响。 25891
毕业论文关键字 光致聚合材料 全息存储 空间频率 链转移剂
Title Improvement of the photopolymer material spatial frequency response
Abstract
Photopolymers are versatile holographic recording materials for use in the development of new
optical elements as well as in data storage devices. For these ongoing applications the recording
materials must be optimized to obtain maximum diffraction efficiency with low scattering. The
storage capabilities of photopolymer materials are under constant study due to their ability to
record low loss, highly diffraction efficient volume holographic gratings. These self-processing
materials are inexpensive and offer characteristics that make them suitable for commercial use.
For practical holographic applications such as data storage, a high spatial frequency material
response is necessary, as it is the response to high spatial frequencies that determines the
resolution and data storage capabilities. Photopolymerization is transferred from the active
center of the growth process chain to another molecule. The chain transfer agent can inactivate
the increasing macromolecules , and the form of a stable macromolecules lead to the reduction
of the molecular weight of the product. According to the former study, we can find out that a
reduction in the polymer chain length will reduce the nonlocality of the polymer chains and
hence improve the spatial frequency response of the material. Therefore, this paper will focus on
the polymerization and holographic system set up, and the influence of a chain transfer
agent(CTA) to polymerization material.
Keywords Photopolymer Holographic recording Spatial frequency CTA
目 录
1 引言 ... 1
1.2 国内外研究现状 ... 1
2.1 光致聚合反应 . 3
2.1.1 反应原理图 . 3
2.1.2 初始反应 ... 3
2.1.3 传播反应 ... 4
2.1.4 终止反应 ... 4
2.1.5 链转移机制 . 4
2.2 全息存储机理 . 6
2.2.1 光全息存储原理 . 6
2.2.2 全息图的形成 ... 6
2.3 全息存储对光致聚合材料的基本要求 . 7
3 NPDD 模型 ... 8
3.1 简介 . 8
3.2 链增长及扩散 . 8 改进光致聚合物材料(空间频率)响应的学习:http://www.youerw.com/tongxin/lunwen_19877.html