小波变换是在 20 世纪 80 年代发展起来的里程碑式的数学分支,1989 年 S。Mallat 提 出了多分辨率分析的概念,对各种构造小波的方法进行了统一,并提出了二进制小波变 换的快速算法,使得小波变换逐渐走向实用,目前,小波变换主要被人们应用于图像处 理、分形几何、数据压缩等各方面领域。[1]
本文通过使用纹理图像分析方法和技术对海洋海平面图像进行一系列处理,其中主 要使用基于信号的图像纹理分析方法中的小波变换和基于统计的纹理分析方法对海平面 图像进行分析,然后使用灰度-梯度共生矩阵和 Tamura 纹理特征法对海平面图像进行海 平面图像特征提取。通过对海平面图像纹理特征提取的相关参数,再通过计算从而得到 海平面粗糙度,最后对实验结果进行验证分析得出结论。73291
总之,本文从近海岸视频监控出发,运用图像分析技术分析海面图像,来研究海气 界面动力学粗糙度与视频图像粗糙度的精确关系,建立新的基于参数的海面粗糙度计算 方案。
毕业论文关键词 小波变换 图像纹理 图像粗糙度 灰度-梯度共生矩阵 Tamura 纹理特征法
毕 业 设 计 说 明 书 外 文 摘 要
Title To achieve image observation technology using transform method
Abstract Wavelet transform is in a landmark branch of mathematics developed in the eighties of the 20th century, S。 Mallat 1989 proposed concept of multi-resolution analysis, to construct wavelet methods are unified, and the fast algorithm of binary wavelet transform, makes wavelet transform by gradually become practical, at present, wavelet transform is mainly applied in image processing, fractal geometry, data compression, and so on the field。
In this paper, by using image texture analysis methods and techniques on the sea plane image of a series of processing, which mainly use method of wavelet transform and texture analysis method based on statistics of sea level image analysis based on signal of image texture analysis, then use gray gradient co-occurrence matrix and Tamura texture features of sea level image of sea level image feature extraction。 Through the related parameters of the sea level image texture feature extraction, and then through the calculation to get the sea surface roughness, finally, the experimental results verify the analysis, a conclusion is drawn。 In short, this paper from the near coast video surveillance of, the use of image analysis technique analysis of sea image, to study the air sea interface kinetic roughening and video image rough degree of the precise relationship, establish new based on parameters of the sea surface roughness calculation scheme。
Keywords wavelet transform Image Texture Image Roughness Gray gradient co-occurrence matrix Tamura texture feature method
本科毕业设计说明书 第 I 页
目 次
1
引言1。1 研究背景及其意义 1
1。2 小波变换的研究历史和现状 1
1。3 小波变换的应用领域 2
1。4 本章小结 3
纹理图像分析 4
Tamura采用变换方法的图像观测技术实现:http://www.youerw.com/tongxin/lunwen_83592.html