菜单
  

    developed. In  the  remaining  sections, the kinematic  and
    dynamic  analysis  of  the  proposed  mobile robot  is
    performed  and various  test results are  presented
    demonstrate  the validity  and  feasibility  of  the proposed
    mechanism.
    2. Variable Wheel Arrangement Mechanism
    In  this  section, the  structure and operational principle
    of the proposed  variable wheel arrangement mechanism
    (VWAM) will  be  presented. In  addition, comparison  of
    this  mechanism  with  the  variable  footprint mechanism
    (VFM) proposed by Wada is discussed  below. Fig. 1 Variable footprint mechanism for CVT [9].
    Figure 1  shows  the variable  footprint mechanism  in
    which  two  beams  can rotate  at  a  pivot  joint  P  in  the
    middle  [9].  Note  that  the  two  beams  are constrained to
    rotate in a symmetric fashion with a single DOF by means
    of  differential  gears  at the  pivot.  The  ball  wheels and
    motors are mounted at each end of the beams. Meanwhile,the variable wheel arrangement mechanism  (VWAM)
    developed  in  this  research  is  illustrated in Fig.  2.  The
    wheel module consists  of  the omnidirectional wheel
    called  a  continuous altemate wheel developed  in  our
    laboratory  [ll] (see  Fig.  6), an inpidual motor  and
    steering  link. Notice  that  the four wheel modules can
    rotate  about each pivot point  CI, .., C,  located  at  the
    comers of the robot body, but they are constrained to have
    a synchronized steering motion of  1 DOF by  the VWAM
    comprising the connecting links and linear guide. In Figures 1 and 2, the steering angle 4  is defined as the
    angle from the zero position  in which the beams (Fig. 1)
    or the  lines (i.e.,  C,C3 or C2C4)  connecting the centers of
    diagonally opposed wheels  (Fig.  2)  coincide  with  the
    diagonal  lines  of  the robot  body.  The wheelbases, the
    distances between the centers of two  adjacent wheels on
    the x-  and y-axis, at the configuration 4 =  0 are denoted as
    dxo  and dyo.  If the robot body is square, then dxo  =  dyo.
    In  Fig.  1  the  rotation center of the wheel module  is
    located  at  the  intersection P  of  the  two  beams. As  the
    steering angle 4 becomes large, therefore, one side of the
    rectangle whose vertices are wheel-ground contact points
    may get excessively smaller than  the  other  side,  thus
    leading  to  increased  instability. Hence the steering angle
    was limited  to  the range between  -17.5'  and  +17.5'  ,
    which  causes  the  range of velocity  ratio  (defined  in
    Section 4) to be  limited. On the contrary, since the wheel
    modules  in Fig. 2 rotate about each pivot joint C,,  .., C4
    placed  at  the  comers  of  a  robot platform, the robot  is
    structurally stable  even  for  a  large steering  angle. As  a
    result  of  this feature,  the  steering angle can  be
    substantially large,  and thus the range of velocity  ratio
    increases accordingly. Figure  3  shows various wheel  .
    arrangements  Using  the variable wheel arrangement
  1. 上一篇:O形密封件摩擦性能英文文献和翻译
  2. 下一篇:四杆机构路径生成英文文献和翻译
  1. 蜂窝移动通信系统英文文献和中文翻译

  2. 液压在移动嵌入式设备中...

  3. 麦克纳姆轮的机器人移动...

  4. 电-气动驱动的垂直计算机...

  5. 移动破碎英文文献和中文翻译

  6. 移动机器人英文文献和中文翻译

  7. 轮足复合式移动机器人英文文献和中文翻译

  8. 江苏省某高中学生体质现状的调查研究

  9. 巴金《激流三部曲》高觉新的悲剧命运

  10. NFC协议物理层的软件实现+文献综述

  11. 中国传统元素在游戏角色...

  12. 浅析中国古代宗法制度

  13. 现代简约美式风格在室内家装中的运用

  14. 上市公司股权结构对经营绩效的影响研究

  15. g-C3N4光催化剂的制备和光催化性能研究

  16. C++最短路径算法研究和程序设计

  17. 高警觉工作人群的元情绪...

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回