菜单
  
    Cost minimization of Shell-and-tube heat exchangers is a key objective. Traditional design approaches
    besides being time consuming, do not guarantee the reach of an economically optimal solution. So, in
    this research, a new shell and tube heat exchanger optimization design approach is developed based on
    biogeography-based optimization (BBO) algorithm. The BBO algorithm has some good features in
    reaching to the global minimum in comparison to other evolutionary algorithms. In this study BBO
    technique has been applied to minimize the total cost of the equipment including capital investment and
    the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger
    by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing,
    etc. Based on proposed method, a full computer code was developed for optimal design of shell and tube
    heat exchangers and three different test cases are solved by it to demonstrate the effectiveness and
    accuracy of the proposed algorithm. Finally the results are compared to those obtained by literature
    approaches up to the present. The obtained results indicate that the BBO algorithm can be successfully
    applied for optimal design of shell and tube heat exchangers.8521
     2012 Elsevier Ltd. All rights reserved.1. Introduction
    Heat exchangers are devices used to transfer heat between two
    or more fluids that are at different temperatures and which inmost
    of the cases they are separated by a solid wall. Shell and tube heat
    exchangers (STHEs) are probably the most common type of heat
    exchangers applicable for a wide range of operating temperatures
    and pressures. Shell and tube heat exchangers are widely used in
    heating and air conditioning, power generation, refrigeration,
    chemical processes, manufacturing and medical applications. A
    typical shell and tube heat exchanger is shown in Fig. 1 [1,2]. This
    widespread use can be justified by its versatility, robustness and
    reliability.
    The design of STHEs involves a large number of geometric and
    operating variables as a part of the search for an exchanger geometry
    that meets the heat duty requirement and a given set of design
    constrains. Usually a reference geometric configuration of the equip-
    ment is chosen at first and an allowable pressure drop value is fixed.
    Then, the values of the designvariables are definedbasedonthe design
    specifications and the assumption of several mechanical and ther-
    modynamic parameters in order to have a satisfactory heat transfer
    coefficient leading to a suitable utilization of the heat exchange
    surface. The designer’s choices are then verified based on iterative
    procedures involvingmany trials until a reasonable design is obtained
    which meets design specifications with a satisfying compromise
    between pressure drops and thermal exchange performances [1e4].
    Due to the important role of shell-and-tube heat exchangers,
    a variety of techniques have been proposed to the design optimi-
    zation problemsuch as, numerical resolution of the stationary point
    equations of a nonlinear objective function [5,6], graphical analysis
    * Corresponding author. Tel.: þ98 914 128 4436.
    E-mail addresses: amin.hadidi@yahoo.com, a-hadidi@iau-ahar.ac.ir (A. Hadidi).
    1359-4311/$ e see front matter  2012 Elsevier Ltd. All rights reserved.
    http://dx.doi.org/10.1016/j.applthermaleng.2012.12.002of the search space [7,8], simulated annealing [9], mixed integer
    nonlinear programming [10], and systematic screening of tube
    count tables [11,12]. In addition, there are some studies based on
    artificial intelligence techniques for the optimization of shell and
    tube heat exchangers. These approaches overcome of some of the
    limitations of traditional design methods based on mathematical
  1. 上一篇:冷却塔实验室模型英文文献和中文翻译
  2. 下一篇:PID控制器仿真英文文献和中文翻译
  1. 升式单位上升操作结构英文文献和中文翻译

  2. 绞盘式绞车英文文献和中文翻译

  3. 套筒弹簧式扭振减振器制...

  4. 桥式起重机智能防摆控制英文文献和中文翻译

  5. 撑开式闸阀设计英文文献和中文翻译

  6. 离岸自升式单元非线性动...

  7. 自升式平台锁定装置英文文献和中文翻译

  8. 中国传统元素在游戏角色...

  9. 现代简约美式风格在室内家装中的运用

  10. C++最短路径算法研究和程序设计

  11. NFC协议物理层的软件实现+文献综述

  12. 江苏省某高中学生体质现状的调查研究

  13. g-C3N4光催化剂的制备和光催化性能研究

  14. 上市公司股权结构对经营绩效的影响研究

  15. 巴金《激流三部曲》高觉新的悲剧命运

  16. 浅析中国古代宗法制度

  17. 高警觉工作人群的元情绪...

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回