摘 要:以去离子水和95%乙醇混合溶液为溶剂、1,10-邻菲咯啉溶液和硝酸铈溶液为原料,在表面活性剂聚乙烯吡咯烷酮(PVP)的帮助下,利用超声辅助液相合成法来合成配位聚合物1,10-邻菲咯啉铈(III),并通过红外光谱和XRD对其结构进行分析。推测配合物的组成为:[Ce(NO3)3(Phen)2]。根据扫描电镜(SEM)测试结果显示,控制PVP浓度和混合溶剂的不同比例,可以得到分散良好,尺寸均匀的1,10-邻菲咯啉合铈(III)。由实验结果,探讨了不同条件对纳米多级结构的影响,研究了长柱形1,10-邻菲咯啉合铈(III)纳米多级结构的形成机制和生长过程,并使用热重(TGA)实验观察配合物的热性能。以1,10-邻菲咯啉合铈(III)为前驱体,在空气中煅烧得到二氧化铈来探究形貌均一、尺寸均匀的微纳米级结构的1,10-邻菲咯啉合铈(III)的性能。93776
毕业论文关键词:1,10-邻菲咯啉合铈(III)配合物、纳米多级结构、超声法、合成
Abstract: With the help of surfactant and polyvinylpyrrolidone (PVP), the solution was prepared by the method of ultrasonic assisted liquid phase synthesis, and the mixture was treated with deionized water and 95% ethanol as solvent, 1,10-phenanthroline solution and cerium nitrate solution as raw materials (III) was synthesized and its structure was analyzed by IR and XRD。 It is presumed that the composition of the complex is [Ce (NO3) 3 (Phen) 2]。 According to the results of scanning electron microscopy (SEM), it was found that 1,10-phenanthroline cerium (III), which was well dispersed and uniform in size, could be obtained by controlling the different proportions of PVP concentration and mixed solvent。 The formation mechanism and growth process of long-column 1,10-phenanthroline cerium (III) nanometer multi-stage structure were studied by using the experimental results。 The effects of different conditions on the nanometer multi-stage structure were studied。 TGA) were used to observe the thermal properties of the complexes。 The cerium oxide was calcined in the air by calcining 1,10-phenanthroline cerium (III) as precursors to investigate the microstructure of the micro-nanometer-structured 1,10-phenanthroline cerium (III) performance。
Keywords:1,10-phenanthroline and cerium (III) complexes, Nano multistage structure, ultrasonic method, synthesis
目 录
1 前言 5
2 实验部分 6
2。1 试剂 6
2。2 仪器 6
2。3 实验步骤 6
2。3。1 [Ce(NO3)3(Phen)2]的合成 6
2。3。2 二氧化铈的制备 7
2。4 结果与讨论 7
2。4。1 [Ce(NO3)3(Phen)2]的红外谱图 7
2。4。2 XRD分析 8
2。4。3 热重分析 9
2。4。4 扫描电镜测试(SEM) 10
结 论 16
参 考 文 献 17
致 谢 18
1 前言
纳米科学技术作为一门新兴科技诞生于上个世纪80年代,虽然出现比较晚但是发展迅速,如今世界上各个国家或企业都非常热衷于发展开发新材料,纳米材料作为热点之一也是备受关注。纳米材料由于其尺寸缩小,精度提高所以会有些独特的性能。比如其独特的表面效应、量子尺寸效应会让其表现出不同于常规材料的特殊性能,因而在各个领域得到广泛的应用[ ]。当材料的尺寸变成纳米级以后,在纳米尺度范围内原子及分子的相互作用就会产生特殊的物理和化学性质[ ],在磁学、光学、电学、力学、热学等方面表现出了与同质块体材料巨大的差异,所以近年来人们对其产生了极大的研究兴趣。