摘要本实验研究了超负荷的Cu(Ⅱ)在厌氧氨氧化颗粒污泥反应器中的分布及其形态动力学。通过连续流实验监测反应器性能和污泥生理特性并以此评估Cu(Ⅱ)对anammox反应器的长期影响。过高的Cu负荷(0.24 gL-1d-1)超过了污泥的承载力,并且沉淀在去除途径中占主要地位。随着时间的推移,Cu由细胞外聚合物向细胞内迁移,Cu形态由弱结合态转变为强结合态。皮尔森相关系数和荧光光谱分析表明:污泥颗粒EPS中蛋白质水平的增加正是对受Cu抑制的自我防卫表现。提出两种恢复策略,即EDTA清洗和超声强化EDTA清洗,金属平衡分配系数从受抑制时的5.8削弱至0.15和0.34 Lmg-1SS,从而加快细胞中积累Cu向外部扩散。48264
Abstract
In this study, the behavior, distribution and form dynamics of overloaded Cu(II) in anaerobic ammonium oxidation (anammox) granular sludge reactors were investigated. The performance and physiological characteristics were tracked by continuous-flow monitoring to evaluate the long-term effects. High Cu loading (0.24 g L−1d−1) exceeded sludge bearing capacity, and precipitation dominated the removal pathway. The Cu distribution migrated from the extracellular polymeric substances-bound to the cell- associated Cu and the Cu forms shifted from the weakly bound to strongly bound fractions over time. Pearson correlation and fluorescence spectra analyses showed that the increase in protein concentra- tions in the EPS was a clear self-defense response to Cu(II) stress. Two remediation strategies,i.e., ethylenediamine tetraacetic acid (EDTA) washing and ultrasound-enhanced EDTA washing, weakened the equilibrium metal partition coefficient from 5.8 to 0.45 and 0.34 L mg−1 SS, respectively, thereby accelerating the external diffusion of the Cu that had accumulated in the anammox granules.
毕业论文关键词:厌氧氨氧化; 铜抑制; 恢复策略; 胞外聚合物; 金属形态
Keywords: Anammox; Copper inhibition; Remediation strategy; Extracellular polymeric substances; Metal fractions
目录
1 引言 5
2 材料与方法 5
2.1 无机模拟废水 5
2.2 anammox反应器与操作策略 5
2.3 anammox颗粒中Cu形态分析 6
2.4 EPS提取和三维荧光光谱 6
2.5 EDTA清洗和超声强化EDTA清洗实验 7
2.6 Cu在连续流反应器中的解吸动力学 7
2.7 分析方法 8
2.8 统计分析 9
3 结果与讨论 9
3.1 Cu在anammox反应器中的行为和归趋 9
3.2 Cu在anammox颗粒中的分布与形态动力学 12
3.3 过量Cu对anammox颗粒的长期影响 16
3.3.1 反应器性能演化与生理动力学 16
3.3.2 污泥特性变化 20
3.4 修复策略 20
3.5 这项研究的启示 22
4 结论 23
参考文献 23
致谢 261 引言
厌氧氨氧化(anaerobic ammonium oxidation, anammox)工艺因其无需外加有机碳源、氮去除率高、运行费用低、占地空间小等优点,已被成功运用于处理低C:N比高浓度含氨的废水[1-4]。预计到2015年初,全球范围会有超过100座生产性规模的anammox工艺设备[5],厌氧氨氧化工艺进入全面应用和发展的新阶段。