摘要传统的熔胶系统加热方式主要是电阻丝加热,这种加热方式存在很多的不足,低效率、高能耗、寿命短、文修量大。本文研究基于电磁加热的熔胶系统,主要目的就是采用电磁感应加热的方式来改造传统的熔胶系统。本文之所以采用电磁感应加热,是因为电磁感应加热方式具有很多优点:寿命长,安全可靠,高效节能,绝缘性好。
本文的主要研究内容包括:胶缸的温度分布;改变相关参数对胶缸温度分布的影响;胶缸的温度测量与控制。电磁感应加热涉及到胶缸参数的温度依赖性,单纯的数学计算并不能解决问题,所以作者采用了ANSYS进行模拟仿真。25983
首先,利用ANSYS分析胶缸的温度分布,为熔胶系统的温度控制提供依据;然后,改变相关参数,观察胶缸温度分布的变化,为胶缸的结构优化提供方向;接着,进行熔胶实验,验证了仿真模拟的正确性;最后,给出了熔胶系统温度测量与控制的简单方案,并运用到熔胶过程中,实现了胶料颗粒的熔化,并且胶料没有碳化现象。
关键词 电磁加热 熔胶系统 ANSYS 温度场 毕业论文设计说明书外文摘要
Title Research of melt system based on electromagnetic heating
Abstract
Traditional melt system uses resistor wire as heater. This way of heating exists a lot of deficiencies such as low efficiency, high energy consumption,short lifetime and large amount of maintenance. The melt system we studies in this paper is based on electromagnetic induction heating. The main purpose is using electromagnetic induction heating to transform traditional melt system. Electromagnetic induction heating has many advantages, such as long lifetime , reliable, energy-efficient and excellent insulating property. That is why we use it.
These aspects are what we focuses on: the temperature distribution of barrel in the melt system; how the related parameters of the barrel affect the temperature distribution; how to measure the temperature of barrel and how to control it . Electromagnetic induction heating involves the temperature dependent parameters of barrel. Simple equation is not sufficient to solve the problem. ANSYS was used to conduct the numerical simulation.
First, we used ANSYS to obtain the temperature distribution of barrel. The result is helpful to the temperature measurement and control. Then, we modified some parameters to observe the changes in the temperature distribution of barrel, and it is helpful to the optimizing of barrel. Next, Electromagnetic induction heating experiment was also carried out and verified the validity of the result of numerical simulation. Finally, a simple temperature measurement and control system was designed.By using this system, the granular raw material was successfully melted and avoided the carbonation of raw materials.
Keywords Electromagnetic heating, Melt system, ANSYS, Temperature field
目次
1. 绪论 1
1.1 本课题研究目的及意义 1
1.2 本课题发展概况 2
1.3 本课题研究内容和研究方法 3
2. 胶缸电磁加热仿真分析 5
2.1 电磁加热原理 5
2.2 电磁加热模型 6
2.3 材料物理参数 7
2.4 配置单元类型与划分网格 9
2.5 载荷 11
2.6 耦合循环运算 11
2.7 本章小结 12
3.电磁加热仿真分析结果 13
3.1分析参数 13