[12] Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.;Baldwin, J. K.;Zelenay, P. Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium-O2 Battery Cathodes. ACS Nano 2012, 6, 9764-9776.
[13] Bashyam, R.; Zelenay, P. A Class of Non-Precious Metal Composite Catalysts for Fuel Cells. Nature 2006, 443, 63-66.
[14] Chen, Z.; Yu, A.; Higgins, D.; Li, H.; Wang, H.; Chen, Z. Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application. Nano Lett.2012, 12, 1946-1952.
[15] Gao, P.; Gratzel, M.; Nazeeruddin, M. K. Organohalide Lead Perovskites for Photovoltaic Applications. Energy Environ. Sci. 2014, 7, 2448-2463.
[16] Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395-398.
[17] Goldschmidt, V. M. Die Gesetze Der Krystallochemie. Naturwissenschaften 1926, 14, 477-485.
[18] Pena, M.; Fierro, J. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981-2018.
[19] Bednorz, J. G.; Müller, K. A. Possible Hight C Superconductivity in the Ba-La-Cu-O System. Z. Phys. B: Condens. Matter 1986, 64, 189-193.
[20] Rørvik, P. M.; Grande, T.; Einarsrud, M.-A. One-Dimensional Nanostructures of Ferroelectric Perovskites. Adv. Mater. 2011, 23, 4007-4034.
[21] Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-Free Piezoceramics. Nature 2004, 432, 84-87.
[22] Maignan, A.; Caignaert, V.; Raveau, B.; Khomskii, D.; Sawatzky, G. Thermoelectric Power of HoBaCo2O5.5: Possible Evidence of the Spin Blockade in Cobaltites. Phys. Rev. Lett. 2004, 93, 026401.
[23] Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chem. Rev.2014, 114, 10292-10368.
[24] Meadowcroft, D. Low-Cost Oxygen Electrode Material. Nature 1970, 226, 847-848.
[25] Savinell, R. F. Oxygen-Reduction Catalysts: Picking Perovskites. Nat. Chem. 2011, 3, 501-502.
[26] Hyodo, T.; Hayashi, M.; Miura, N.; Yamazoe, N. Catalytic Activities of Rare-Earth Manganites for Cathodic Reduction of Oxygen in Alkaline Solution. J. Electrochem. Soc. 1996, 143, L266-L267.
[27] Kozuka, H.; Ohbayashi, K.; Koumoto, K. Electronic Conduction in La-Based Perovskite-Type Oxides. Sci. Technol. Adv. Mater.2015, 16, 026001.
[28] Wang, Y.; Cheng, H.-P. Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3. J. Phys. Chem. C 2013, 117, 2106−2112.
[29] Zhu, C.; Nobuta, A.; Nakatsugawa, I.; Akiyama, T. Solution Combustion Synthesis of LaMO3 (M = Fe, Co, Mn) Perovskite Nanoparticles and the Measurement of Their Electrocatalytic Properties for Air Cathode. Int. J. Hydrogen Energy 2013, 38, 13238-13248.
[30] Hardin, W. G.; Mefford, J. T.; Slanac, D. A.; Patel, B. B.; Wang, X.; Dai, S.; Zhao, X.; Ruoff, R. S.; Johnston, K. P.; Stevenson, K. J. Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions. Chem. Mater. 2014, 26, 3368-3376.
[31] Lee, Y.-L.; Kleis, J.; Rossmeisl, J.; Morgan, D. Ab initio Energetics of LaBO3
(001) (B = Mn, Fe, Co, and Ni) for Solid Oxide Fuel Cell Cathodes. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 80, 224101.
[32] Grimaud, A.; Carlton, C. E.; Risch, M.; Hong, W. T.; May, K. J.; Shao-Horn, Y. Oxygen Evolution Activity and Stability of Ba6Mn5O16, Sr4Mn2CoO9, and Sr6Co5O15: The Influence of Transition Metal Coordination. J. Phys. Chem. C 2013, 117, 25926-25932.
[33] Yuasa, M.; Tachibana, N.; Shimanoe, K. Oxygen Reduction Activity of Carbon-Supported La1-xCaxMn1‑yFeyO3 Nanoparticles. Chem. Mater. 2013, 25, 3072-3079. OER电催化剂的研究现状和参考文献(2):http://www.youerw.com/yanjiu/lunwen_205045.html