[16] Zhang G Q, Zhang X G, Li H L. Self-assembly preparation of mesoporous hollow nanospheric manganese dioxide and its application in zinc-air battery[J]. Journal of Solid State Electrochemistry, 2006, 10(12): 995-1001..
[17] 唐致远, 耿新. 掺Fe3+ MnO2超级电容器电极材料的制备[J]. 应用化学, 2002, 19(10): 936-940.
[18] 刘献明, 张校刚, 包淑娟, 等. 掺钴MnO2电极的电化学电容行为研究[J]. 功能材料与器件学报, 2003, 9(3): 267-271.
[19] Rajendra Prasad K, Miura N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors[J]. Electrochemistry Communications, 2004, 6(10): 1004-1008.
[20] Saliger R, Fischer U, Herta C, et al. High surface area carbon aerogels for supercapacitors[J]. Journal of Non-Crystalline Solids, 1998, 225: 81-85.
[21] Zhang W D, Chen J. Fabrication of a vertically aligned carbon nanotube electrode and its modification by nanostructured MnO2 for supercapacitors[J]. Pure & Applied Chemistry, 2009, 81(12).
[22] Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications[J]. The Journal of Physical Chemistry C, 2009, 114(1): 658-663.
[23] Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
[24] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[25] Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification[J]. Angewandte Chemie International Edition, 2008, 47(20): 3696-3717.
[26] You B, Yang J, Sun Y, et al. Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor[J]. Chemical Communications, 2011, 47(45): 12364-12366.
[27] Wang F L, Pang L L, Jiang Y Y, et al. Simple synthesis of hollow carbon spheres from glucose[J]. Materials Letters, 2009, 63(29): 2564-2566.
[28] Xiao C, Chu X, Yang Y, et al. Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine[J]. Biosensors and Bioelectronics, 2011, 26(6): 2934-2939.
[29] De Almeida Filho C, Zarbin A J G. Hollow porous carbon microspheres obtained by the pyrolysis of TiO2/poly (furfuryl alcohol) composite precursors[J]. Carbon, 2006, 44(14): 2869-2876.
[30] Liang C, Hong K, Guiochon G A, et al. Synthesis of a Large‐Scale Highly Ordered Porous Carbon Film by Self‐Assembly of Block Copolymers[J]. Angewandte Chemie International Edition, 2004, 43(43): 5785-5789.
[31] Yang M, Wang G. Synthesis of hierarchical porous carbon particles by hollow polymer microsphere template[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345(1): 121-126.
[32] White R J, Tauer K, Antonietti M, et al. Functional hollow carbon nanospheres by latex templating[J]. Journal of the American Chemical Society, 2010, 132(49): 17360-17363.
[33] 罗杨丽. 碳球/MnO2 的水热合成及超级电容性能研究[D]. 重庆大学, 2012.
[34] 贾凡. 纳米 MnO2/炭黑电化学电容器电极材料研究[D]. 天津大学, 2012.
[35] Yang Z C, Tang C H, Gong H, et al. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application[J]. Journal of Power Sources, 2013, 240: 713-720
[36] Zhang H, Cao G, Wang Z, et al. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage[J]. Nano letters, 2008, 8(9): 2664-2668.
[37] Zhao Y, Meng Y, Jiang P. Carbon@ MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials[J]. Journal of Power Sources, 2014, 259: 219-226.
[38] Wang H, Liu J, Wang X, et al. Nanoflaky MnO2 grown in situ on carbon microbeads as an anode material for high-performance lithium-ion batteries[J]. RSC Advances, 2014, 4(42): 22241-22245. 级电容器电极材料研究现状和参考文献(2):http://www.youerw.com/yanjiu/lunwen_33325.html