毕业论文

打赏
当前位置: 毕业论文 > 自动化 >

AT89S52单片机的自学习红外遥控器设计+源代码+电路图(9)

时间:2016-12-24 11:53来源:毕业论文
16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。其访问地址依次为8AH到8DH。每个寄存器均可单独访问。这些寄存


16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。其访问地址依次为8AH到8DH。每个寄存器均可单独访问。这些寄存器是用于存放定时或计数初值的。此外,其内部还有一个8位的定时器方式寄存器TMOD和一个8位的定时控制寄存器TCON。这些寄存器之间是通过内部总线和控制逻辑电路连接起来的。TMOD主要是用于选定定时器的工作方式;TCON主要是用于控制定时器的启动停止,此外TCON还可以保存T0、T1的溢出和中断标志。当定时器工作在计数方式时,外部事件通过引脚T0(P3.4)和T1(P3.5)输入。下图 4-4 单片机最小系统。
图 4-4 单片机最小系统
4.2  复位电路
当MCS-51单片机的复位引脚RST出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。
复位的基本功能是:系统上电时提供复位信号。直至系统电源稳定后,撤消复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。
51单片机的复位是由RESET引脚来控制的,此引脚与高电平相接超过24个振荡周期后,51单片机即进入芯片内部复位状态,而且一直在此状态下等待,直到RESET引脚转为低电平后,才检查EA引脚是高电平或低电平,若为高电平则执行芯片内部的程序代码,若为低电平便会执行外部程序。由于本设计只采用内部存储器,不会执行外部程序,因此EA端一般为高电平。单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器PC=0000H,这表明程序从0000H地址单元开始执行。单片机冷启动后,片内RAM为随机值,运行中的复位操作不改变片内RAM区中的内容,21个特殊功能寄存器复位后的状态为确定值。
与其他计算机一样,MCS-51单片机系统常常有上电复位和操作复位两种方法。操作复位指用户按下“复位”按钮使计算机进入复位状态。上电复位电路是—种简单的复位电路,只要在RST复位引脚接一个电容到VCC,接一个电阻到地就可以了。上电复位是指在给系统上电时,复位电路通过电容加到RST复位引脚一个短暂的高电平信号,这个复位信号随着VCC对电容的充电过程而回落,所以RST引脚复位的高电平文持时间取决于电容的充电时间。为了保证系统安全可靠的复位,RST引脚的高电平信号必须文持足够长的时间。MCS-51单片机的复位是由外部的复位电路来实现的。下图4-5是上电复位电路。
图4-5  上电复位电路
4.3  时钟电路
时钟是单片机的心脏,单片机各功能部件的运行都是以时钟频率为基准,有条不紊的一拍一拍地工作。因此,时钟频率直接影响单片机的速度,时钟电路的质量也直接影响单片机系统的稳定性。
单片机的定时功能是用片内的时钟电路和定时电路来完成的,而片内的时钟产生有两种方式:内部时钟方式和外部时钟方式。本设计用的是内部时钟方式。
本系统采用内部时钟方式,片内高增益反相放大器通过XTAL1,XTAL2外接作为反馈元件的晶体(呈感性)与电容组成的并联谐振回路过程的一个自激振荡向内部时钟提供振荡时钟。电容的值通常取30pF左右。
电路图4-6如下:
图4-6  时钟电路
单片机以晶体振荡器的振荡周期为最小的时序单位,片内的各种微操作都以此周期为时序基准。振荡频率二分频后形成状态周期,一个状态周期包含2个振荡周期,振荡频率二分频后形成机器周期,一个机器周期包含有6个状态周期或者12个振荡周期,1到4个机器周期确定一条指令的执行时间,这个时间便是指令周期。在MCS-51单片机的所有指令中,有些完成的比较快,只需一个机器周期就行,有些完成的比较慢,则需两个机器周期或者四个机器周期才能完成。具体的周期计算是这样的。如果外接晶振频率为12MHZ,那么振荡周期为1/12MHZ=0.0833us,状态周期为0.0167us,机器周期为1us,指令周期为1到4us。当单片机工作于计数模式时,它的初值为(计数个数)求补,当工作于定时模式时,它的初值为(定时时间/机器周期)求补,根据不同的工作模式对初值进行装入。 AT89S52单片机的自学习红外遥控器设计+源代码+电路图(9):http://www.youerw.com/zidonghua/lunwen_1471.html
------分隔线----------------------------
推荐内容