摘要现实世界中的动态系统许多为分数阶,因此使用分数阶模型描述的动态系统比整数阶数学模型所描述的更为精确。分数阶系统是建立在分数阶微积分上的实际系统的数学模型,是传统整数微积分的拓延,采用分数阶微积分能更好的对研究对象进行数学描述。分数阶的常用定义有Riemann-Liouville分数导数和Caputo分数导数,本课题我们将基于Caputo分数分数阶系统展开研究。
多智能体系统是指由多个智能体组成的集合,要求每个智能体通力协作,最大限度地发挥他们各自的特性,从而可以完成一些难度较大的问题。多智能体达到一致性是多智能体去完成某项任务的首要条件。本课题首先介绍了分数阶系统的研究背景和研究现状;然后阐述了分数阶的两种常用定义和分数阶系统的性能,如可控性、可观性及系统的稳定性,最后将Caputo分数阶微积分模型引入到多智能体系统的一致性控制问题中,基于Matlab实现模拟仿真,验证了方法的有效性。26085
关键词 分数阶系统 分数阶微积分 多智能体系统 一致性
毕业论文设计说明书外文摘要
Title A kind of Multi-Agent Based On Consistency Control of Caputo fractional order
Abstract
Most of dynamic system in the real world is fractional order. Using fractional order mathematical model is more accurately than the integer order mathematical model for describing dynamic system. Fractional order system is a mathematical model of the actual system based on fractional calculus. Using fractional order calculus can make better mathematical description of the object. The commonly used definition of fractional order is Riemann-Liouville fractional derivative and Caputo fractional derivative。This task we will make research based on Caputo fractional order system.
Multi agent system is an aggregate of multiple agents, each agent required to enable collaboration, maximize their respective
characteristics, so it can finish some difficult problems. Multi-agent to achieve consistency is the first condition of multi-agent to accomplish a task.This task firstly introduces the research background and research status of fractional order system.And then describes two commonly used definitions and the properties of fractional order system.Finally the Caputo fractional calculus model is introduced into the consistency control problem in multiagent systems, realize simulation based on Matlab ,verify the effectiveness of the proposed method.
Keywords Fractional order system Fractional calculus Multi-agent System consistency
目 次
1 引言 1
1.1 研究背景 1
1.2 分数阶系统研究现状 2
1.3 本课题的研究内容及方法 3
2 分数阶微积分与分数阶系统 4
2.1 分数阶微积分数学基础 4
2.2 分数阶系统 6
2.3分数阶系统多智能体一致性控制 11
2.4小结 12
3 caputo分数阶的多智能体一致性控制 13
3.1 有关分数阶数学基础 13
3.2 分数阶系统协调算法 13
3.3仿真实例与结果 15
总结与展望 19
致谢 20
参考文献 21
1 引言
1.1 研究背景
1.1.1 分数阶系统
现实世界中的动态系统多为分数阶,使用分数阶数学模型描述的动态系统比整数阶数学模型所描述的更为精确。分数阶系统是建立在分数阶微积分以及分数阶微积分方程理论上实际系统的数学模型。分数微积分是一门求任意阶导数和积分的学科,是传统整数微积分的拓延,采用分数阶微积分能更好的对对象进行数学描述。 一类基于caputo分数阶的多智能体一致性控制:http://www.youerw.com/zidonghua/lunwen_20142.html