选择极对数应综合考虑运行性能和经济指标。下图为两极、四极和八极(p=1,2,4)内转子型无刷直流电机本体结构示意图。
一般来说增加极对数p,可以减少每极磁通,定子轭及机座截面积可相应减小,从而减少电动机的用铁量;定子绕组的端接部分将随极数的增加而缩短,所以在同样的电流密度下,绕组的用铜量也减少了;极数增加后定子绕组电感相应减少,这有利于电子器件换相。
同时,当极数增加后,制造工艺也变复杂;极对数增加,考虑到极漏磁不能太大,极弧系数要减小,从而使电动机原材料利用率变差;增加极数,在同样的转速下,电子器件的换相次数增多,从而增加了换相损耗。当电流密度不变时,定子绕组中的铜耗岁极数的增加而降低。一般来说电动机效率随极数的增加而有所下降。所以要根据需要合理的选择电动机的极对数。
2.3 转子位置检测
由于无刷直流电机利用永磁同步电机的结构代替了传统直流电机的结构,所以需要逆变装置和转子位置检测结构来实现“换相”过程。转子位置检测的方法主要分为以下两大类
2.3.1 位置传感器检测法
位置传感器在无刷直流电机中起着检测转子磁极位置、为逻辑开关电路提供正确的换相信息的作用,即将转子磁极的位置信号转换成电信号,然后去控制定子绕组换相。绕组换相。位置传感器种类很多,目前在无刷直流电动机常用的有电磁式位置传感器、光电式传感器、磁敏式位置传感器和旋转变压器等。
电磁式位置传感器是利用电磁效应来测量转子位置,有开口变压器、铁磁谐振电路、接近开关电路等多种类型。它具有输出信号大、工作可靠、寿命长、对环境要求小等优点,但这种传感器体积较大,信噪比较低,同时其输出波形为交流,一般需要经整流、滤波方可使用。
光电式位置传感器是利用光电效应,由跟随电机转子一起旋转的遮光部分和固定不动的光源等部件组成,有绝对式编码器和增量式编码器之分。它具有定位精度高、价格便宜、易加工等特点,但对恶劣环境的适应能力较差,输出信号需加整形电路处理。
磁敏式位置传感器是利用某些半导体敏感元件的电参数按一定规律随周围磁场变化而变化的原理制成。常见的类型有霍尔元件、磁敏电阻和磁敏二极管等。一般说来,它对环境适应能力较强,输出信号好,成本低廉,但精度不高。霍尔传感器的应用比较广泛
旋转变压器一般用在多相电机的控制中,它可以输出多路位置信号,满足多相电机控制的要求,但安装不易,价格较昂贵,普通的三相无刷直流电动机很少用旋转变压器。
霍尔传感器是依据霍尔效应原理制成。霍尔效应是指当通电导体处于磁场中,由于磁场的作用力使得导体内的电荷会向导体的一侧聚集,当薄平板通电导体处于磁场中时这种效应更为明显,这样一侧聚集了电荷的导体会抵消磁场的这种影响,由于电荷在导体一侧的聚集,从而使得导体两侧产生电压,这种现象就称为霍尔效应,E.H霍尔在 1879 年发现了这一现象,故以此命名。根据霍尔效应原理可以制成四端半导体的元件。;两个输出端输出霍尔电压,两个控制端输入控制电流。实用的霍尔片厚度很薄,均在几微米一下。从霍尔片的结构来看,它的制作和半导体元件将近。目前,由硅材料制作的霍尔元件制造技术成熟,适于大批量 ,价格低,性能随稍差但应用非常广泛。由砷化镓制成的霍尔元件性能最好但是价格高限制了应用。
当霍尔元件在磁场中位置变化时,霍尔电动势的大小和方向也相应变化,这样就起到了反应传感器位置的作用。上述霍尔元件所产生的电动势不够大,在应用时往往要外接放大器,很不方便。随着半导体集成技术的发展,霍尔元件和放大电路往往集成在一个芯片中,构成了霍尔集成电路。其结构如下图所示 无刷直流电机控制研究+Matlab仿真模型(5):http://www.youerw.com/zidonghua/lunwen_304.html