摘要本文针对一类带有时滞的线性时不变系统, 使用 Lyapunov 稳定性理论和矩阵变换技术,研究了非脆弱H跟踪控制问题。目的是设计状态反馈控制器,当其增益存在时变扰动时,闭环系统的状态追踪一个参考信号,该参考信号由稳定的参考系统产生。首先,对闭环系统的稳定性和H性能进行了分析,导出了闭环系统稳定且满足H性能的充分条件。在此基础上,获得了非脆弱H状态反馈跟踪控制器的存在条件,该条件由一组线性矩阵不等式描述,期望控制器的增益可以由所得线性矩阵不等式的可行解构造获得。最后,提供了数值算例和仿真结果,对本文提出的设计方法进行了验证。仿真结果表明,采用本文方法所设计的控制器,对任意满足一定假设条件的增益扰动,都可以使闭环系统的状态很好地跟踪参考信号,从而验证了本文设计方法的有效性。61071
毕业论文关键词 时滞系统 跟踪控制 非脆弱控制 线性矩阵不等式 不确定系统
Title On Non-Fragile H Tracking Controlfor Linear Time-Delay Systems
Abstract The problem of non-fragile H tracking control for a class of lineartime-invariant systems with time delays is investigated by applying theLyapunov stability theory and matrix transform techniques. The objectiveis to design a state-feedback controller such that, when time-varyingperturbations of the controller gain exist, the state of the closed-loopsystem follows a reference signal generated by a stable reference system.Firstly, the stability and H performance of the closed-loop system areanalyzed, and sufficient conditions guaranteeing the stability and Hperformance of the closed-loop system are obtained. Then, conditions forthe existence of non-fragile H state-feedback tracking controllers arederived. These conditions are given in terms of linear matrix inequalities.The desired controller gains can be constructed by using feasible solutionsto the obtained linear matrix inequalities. Finally, a numerical exampleand simulation results are provided to demonstrate the proposed method.Simulation results show that, for any gain perturbations satisfyingcertain assumptions, the controller designed by using the proposed methodensures the state of the closed-loop system to well track the referencesignal, which illustrates the effectiveness of the proposed design method.
Keywords Time-Delay Systems Tracking Control Non-fragile ControlLinear Matrix Inequality Uncertain Systems
目次
1 绪论1
1.1 时滞系统及其研究现状1
1.2 跟踪控制及其研究现状2
1.3 非脆弱控制及其研究现状..3
1.4 本文的主要工作3
2 问题描述.5
3 H跟踪控制器设计.. 8
3.1 稳定性分析..8
3.2 H跟踪性能分析 10
3.3 控制器设计12
4 算例仿真..15
4.1 控制器参数求解.15
4.2 系统跟踪性能..16
4.3 控制器非脆弱性.19
4.4 时滞对跟踪性能的影响.23
结论.27
致谢.28
参考文献29
1绪论1.1 时滞系统及其研究现状时滞是指普遍存在于生物、物理和工程等领域的一种时间延迟现象,因此在文献中也被称为时延。含有时滞的系统模型称为时滞系统,常用时滞泛函微分方程(连续时间系统情形)或者差分方程(离散时间系统情形)来描述[1-3]。从形式上不难看出,时滞系统的状态变化或者输出信号与过去某段时间或者某个时刻的状态有关, 这类系统可以用来描述许多实际现象,例如,在考虑信息通讯的网络控制系统之中, 信号从传感器传送至控制器或者从控制器传送至执行器,都不可避免地存在传输时滞,因此网络控制系统就是一类典型的时滞系统模型[4]。与无时滞系统不同的是,时滞系统是无穷维系统,对其进行动力学行为分析和控制综合等问题的研究变得的更为复杂和困难。源]自=优尔-·论~文"网·www.youerw.com/ 同时值得注意的是,时滞的存在往往是系统不稳定或者性能变差的主要根源之一, 这使得研究人员不得不讨论时滞对系统稳定性和性能的影响。自 20 世纪 50 年代至今,时滞系统分析与综合理论研究一直是控制理论与工程领域的一个重要研究方向,吸引了大量研究人员致力于其中;特别是近十年来,随着 Lyapunov-Krasovskii 泛函方法、线性矩阵不等式技术、自由权矩阵方法、积分不等式方法等分析方法的迅速发展,时滞系统在稳定性分析、控制器设计和状态估计等多个领域均获得了广泛研究,涌现出了大量有学术价值的研究成果[1-12]。 线性时滞系统的非脆弱H跟踪控制研究:http://www.youerw.com/zidonghua/lunwen_66677.html