摘要:燃料电池作为一种清洁,高效的能源正受到越来越多的关注。铂基电催化剂在燃料电池上作用有目共睹,但铂纳米颗粒在形核生长时,受到生长环境的温度,压力,反应环境等原因导致形成晶粒直径大,比表面积小,制约了催化效率。针对以上问题,本文对硫参杂石墨纳米笼在乙二醇中油浴加热体系中制备电催化剂进行研究。发现以下结果:在乙二醇中140℃油浴还原氯铂酸和氯化钌,沉积铂钌合金纳米颗粒均匀分布在石墨纳米笼的表面,平均直径在4nm左右,通过在扫描速率为50 mV/s下,获得硫酸甲醇混合液中循环伏安测试曲线图,在~0.7 V处出现初次甲醇氧化峰,在~0.45 V处出现二次甲醇氧化峰,在~0.7 V处出现初次甲醇氧化峰的峰值明显高于在~0.45 V处出现二次甲醇氧化峰。由于较高的氧化峰有利于提高燃料电池的输出电压,说明钌的加入对提高甲醇氧化催化效率,预防催化剂中毒有利。42882
毕业论文关键词:碳纳米笼;铂钌纳米颗粒;比表面积
Investigation on PtRu nanoparticles loading on doped carbon nanocages
Abstract:Fuel cells regarded as a clean and efficient energy, is drawn more and more attention. Obviously, platinum electro-catalyst is useful in fuel cells. However, nucleation growth of platinum nanoparticles is deeply influenced by temperature, pressure, environment and so on, leading to forming large PtRu nanoparticles and low specific surface area, which reduces the catalysis. Here, the methods for loading PtRu nanoparticles on C support have been investigated to release those problems. For comparison, three loading methods and two different supports are involved. As a result, PtRu deposition by ethylene glycol method is more effective route than other ones for PtRu loading, because this method decreases reduction rate of PtRu and a controllable reduction processing leads to smaller sizes of PtRu nanoparticles and high specific surface area as well. Compared with carbon nanocages perform better, as PtRu support materials, due to their high specific surface area. When PtRu loading amount is the same, there are more nucleation points for PtRu deposition and high surface area also improve distribution of PtRu nanoparticles on the nanocage surface, leading to improvement of PtRu Loading.
Keyword: Carbon nanocages; PtRu nanoparticles; Specific surface area
目录
1 前言 1
1.1 燃料电池 1
1.2 直接甲醇燃料电池的背景 2
1.3 Pt基催化剂的制备 5
1.4 碳纳米材料的制备方法 8
1.4.1 碳纳米材料的气相制备 8
1.4.2 石墨电弧法 8
1.4.3 激光蒸发法 9
1.4.4 化学气相沉积法 9
1.5 研究意义 10
2 实验 12
2.1 实验设备以及原料 12
2.1.1 实验原料 12
2.1.2 实验设备 12
2.2 实验过程 12
2.2.1 氮掺杂石墨纳米笼的制备 13
2.2.2 催化剂的制备 14
2.2.3 样品表征 14
3 实验结果与分析 16
3.1 硫掺杂石墨纳米笼 16
3.2 石墨纳米笼负载铂钌合金纳米颗粒 掺杂碳纳米笼负载铂钌纳米颗粒的研究:http://www.youerw.com/cailiao/lunwen_43490.html