摘要为了进行锂离子电池正极材料尖晶石型锰酸锂晶体制备工艺的改性优化,以醋酸锰和硝酸锂为原料,利用溶胶凝胶法,通过控制改变烧结温度和时间制备出锰酸锂纳米粒子。用XRD、SEM对产物的结构特征、微观表面形貌进行了表征并对其恒电流充放电特性进行研究。结果表明:在600℃下烧结5个小时所得的正极材料,结晶程度较高、无杂质相、材料颗粒均匀度高,所得产物最为理想。而电化学测试显示所制得的锰酸锂材料首次放电容量达到141mAh/g,经过30次循环后可逆容量为108mAh/g。7156
关键词:锂离子电池;正极材料;溶胶凝胶;锰酸锂
毕业设计说明书(论文)外文摘要
Title Synthesis of ultrafined LiMn2O4 as cathode materials for lithium-ion secondary battery
Abstract
In order to modify and optimize the preparation procedure of spinel LiMn2O4 as cathode materials for lithium-ion battery, Mn(CH3COO)2 and LiNO3 were used as raw materials to prepare LiMn2O4 nanoparticles by controlling and changing the sintering temperatures and times through the sol-gel method. The structure characteristics and micro morphology of the product were characterized by XRD and SEM.The results show that the cathode material sintered at 600 ℃ for 5 hours is excellent,which crystallinity is high scale without impurity phase,and the particles is uniform . The electrochemical test shows that the initial discharge capacities of the nanoparticles is141 mA h/g.After the 30th cycle, the reversible capacity is 108 mA g/h
Keywords Lithium-ion battery;Cathode materials;Sol-gel method;LiMn2O4
目 次
1 引言 2
1.1 锂离子电池工作原理 2
1.2 常用锂离子电池正极材料 3
1.3 LiMn2O4正极材料 4
1.3.1 LiMn2O4的结构 4
1.3.2 LiMn2O4材料存在的主要问题 4
1.3.3 LiMn2O4正极材料的制备 5
1.3.4 正极材料烧结工艺 6
1.4 小结 6
2 实验部分 6
2.1 实验试剂和仪器 6
2.2 LiMn2O4的合成 7
2.3 性能表征 10
2.3.1 X射线衍射分析 10
2.3.3 扫描电子显微镜(SEM)分析 11
2.4 结果与分析 12
2.4.1 试样XRD分析 12
2.4.2 试样SEM分析 19
结 论 24
致 谢 25
参 考 文 献 26
1 引言
二次世界大战之后,化学电源发展十分迅速。由于空间技术、移动通信、导弹、航空等有关军事需要的行业快速发展,带动并刺激了高储能电池的研究、开发。锂元素是质量最小的金属元素,其组成的电池具有开路电压高、质量比和体积比容量大的特点,使其成为研究人员钟情的研究对象。加之能源的日益紧张以及人们对环境保护的意识越来越强,锂离子电池的实用性和产业化显得日益迫切和重要,锂离子动力电池是现在最有希望取代石油作为动力源而越来越受各国政府重视。1990年SONY公司首先在市场上推出锂离子二次电池产品[1],在电池界里掀起了一股研究锂二次电池的热潮。锂离子电池是以锂离子能够自由脱嵌的化合物作为正、负极材料的新一代电池。它具有输出电压高、比能量高、循环寿命长、自放电小、无记忆效应、安全性好等特点。决定锂离子电池性能的重要因素之一是正极材料,研究和开发高性能的正极材料也就成为目前锂离子电池发展的关键所在。商品化LiCoO2的循环性能好,但比容量偏低、价格高,对环境污染较大。 超细锂离子电池正极材料LiMn2O4的合成技术研究:http://www.youerw.com/cailiao/lunwen_4971.html