毕业论文

打赏
当前位置: 毕业论文 > 外文文献翻译 >

摆线针轮行星传动英文文献和中文翻译(8)

时间:2020-05-24 15:30来源:毕业论文
Proof: Let X* minimize the quadratic function Q(X). Then Q(X*)=B+A X*=0 (6.32) Given a point X and a set of linearly independent directions S ,S ,,S ,constants can always be found such that X*= X + (6

Proof: Let X* minimize the quadratic function Q(X). Then

              Q(X*)=B+A X*=0                        (6.32)

Given a point X  and a set of linearly independent directions S ,S ,…,S ,constants  can always be found such that

               X*= X +                            (6.33)

where the vectors S ,S ,…,S  have been used as basis vectors. If the directions S are A conjugate and none of them is zero, the S , can easily be shown to be linearly independent and the  can be determined as follows.

Equations (6.32) and (6.33) lead to

           B+A X +A( )=0                       (6.34)

   Multiplying this equation throughout by S ,we obtain

              S  (B+A X )+ S A( )=0               (6.35)

   Equation (6.35) can be rewritten as

              (B+A X ) S + S A S =0                  (6.36)

that is, 

               =-                           (6.37)

Now consider an iterative minimization procedure starting at point X ,and successively minimizing the quadratic Q(X) in the directions S ,S ,…,S ,where these directions satisfy Eq. (6.27). The successive points are determined by the relation

              X =X + S ,  i=1 to n                     (6.38)

where  is found by minimizing Q (X + S )so that S  Q(X )=0 is equivalent to  =0 atY= X 

                      = 

where y  are the components of Y= X  

              S  Q(X )=0                              (6.39)

Since the gradient of Q at the point X , is given by 

               Q(X )=B+A X                           (6.40)

Eq. (6.39) can be written as

              S {B+A(X + S )}=0                        (6.41)

This equation gives

              =-                              (6.42)

From Eq. (6.38), we can express X  as

             X =X +                                 (6.43)

so that

                   X AS = X AS + 

                     = X AS                               (6.44)

using the relation (6.27). Thus Eq. (6.42) becomes

              =-(B+AX )                           (6.45)

which can be seen to be identical to Eq. (6.37). Hence the minimizing step lengths are given by   or   . Since the optimal point X* is originally expressed as a sum of n quantities   which have been shown to be equivalent to the minimizing step lengths, the minimization process leads to the minimum point in n steps or less. Since we have not made any assumption regarding X  and the order of S ,S ,…,S , the process converges in n steps or less, independent of the starting point as well as the order in which the minimization directions are used. 摆线针轮行星传动英文文献和中文翻译(8):http://www.youerw.com/fanyi/lunwen_52643.html

------分隔线----------------------------
推荐内容