摘要本文针对微结构含能器件的制备问题,提出了一种原位合成的制备方法。初步设计了点火桥型,运用MEMS (Micro-Electro-Mechanical System)技术制备了点火电路。通过气-固反应成功实现了三文多孔微-纳米结构Cu(N3)2微结构含能芯片的原位合成,并进行了电爆性能的测试。26702
采用氢气泡模板法在恒定电流密度I=2A•cm-2、常温条件下通过电化学工作站沉积30s获得具有微纳结构的多孔铜,电解液为0.2M CuSO4、1.0M H2SO4的混合溶液,沉积的多孔铜孔径在100μm以内,颗粒状堆积的主晶枝和次级晶枝形成了多孔铜的微-纳米结构。在磁力搅拌器缓慢搅拌下,硬脂酸和叠氮化钠在130℃下反应生成叠氮酸气体(HN3),叠氮酸气体与多孔铜(PCu)发生原位化学反应得到叠氮化铜。叠氮化反应时间通常在12h~48h,考虑到安全因素把反应时间设置为24h。
制备的含能芯片样品在25V电压作用下发生爆炸反应,伴随较大的爆炸声,发出明亮的闪光,整个作用时间为0.198ms,瞬发性好。由于生成大量氮气并释放热量,使得叠氮化铜含能芯片的爆炸威力较大。
关键词: 磁控溅射 镀膜 光刻 多孔铜 叠氮化铜 MEMS含能芯片
毕业论文设计说明书外文摘要
Title The integrated method for MEMS energetic chip
Abstract
To deal with the fabrication problem of the micro-energy chip, an in-situ synthesis method was presented. The specific ignition bridges were designed and the ignition circuit was prepared by MEMS technology.The micro-energy chip with three-dimensional (3-D) porous micro-nano structured copper azide Cu(N3)2 was successfully synthesized through in situ reaction and the explosion tests were successfully carried out.
The porous copper with miro-nano structure was electrodeposited on the ignition circuit in a constant current density of I=2A•cm-2 at room temperature for 30s through hydrogen bubble template method and the electrolyte was a mixed solution of 0.2M CuSO4、1.0M H2SO4.The porous copper were deposited within the 100μm aperture and the microstructure of the porous copper were formed by the primary and secondary dendrites with granular deposited. The copper azide was synthesized through in situ reaction of porous copper with hydrazoic acid(HN3) on 3-D foam PCu film for 12h~48h which was controlled for 24 h considering reactive safety, and the HN3 was prepared through the reaction of NaN3 and C17H35COOH at about 130℃, heating by collector magnetic stirrer, with slowly stirring.The explosive The MEMS energy chip was successfully triggered to explosion at 25V.The exploding time was 0.198ms with loud explosions and bright flash, which showed excellent graze burst property. The released gas of N2 can significantly enhance the explosive power of the MEMS energy chip because of its gaseous product and exothermic reaction.
Keywords Magnetron sputtering Coating Lithography porous copper azide copper MEMS energetic chip
目 次
1 绪论1
1.1 研究背景和意义1
1.2 国内外研究进展2
1.3 多孔铜、叠氮化铜研究现状3
1.4 本论文的主要工作5
2 叠氮化铜制备及表征6
2.1 叠氮化实验装置、药品和仪器6
2.2 实验过程7
2.3 实验结果与分析15
3 MEMS的含能芯片设计17
3.1 镍铬点火桥设计17
3.2 微尺度芯片的制备18
3.3 实验结果与分析25
结论26
致谢28
参考文献29
1 绪论
1.1 研究背景和意义
在弹药技术研究领域,传统装药技术中所包含的合成、处理、压药、贮存等环节都存在一定的不可控性和危险性,而且随着武器系统的复杂化和智能化,引信趋于小型化,由于体积限制了它的功能的扩展,采用微机电系统可以解决这个矛盾,使得引信更加小型化,留出更多的空间,实现其功能扩展,满足其微小化的需求。微结构的MEMS设计的引信能够做到足够微小,通过高度的集成化和结构设计达到智能化。MEMS的研究运用能够降低装药的重量和整个武器的体积,大大提高武器的性能,并且能够实现一些特别的新功能,提高弹药的整体化性能。 MEMS含能芯片的一体化集成方法:http://www.youerw.com/huaxue/lunwen_20962.html