摘要通过简单混合煅烧BiVO4和g-C3N4的方法制备BiVO4/g-C3N4复合光催化材料。分别采用X-射线衍射(XRD)仪、透射电子显微镜(TEM)、傅里叶红外光谱(FTIR)、紫外-可见漫反射光谱(UV-vis DRS)进行晶相鉴定、观察微观形貌特征、检测红外光学性质、测算禁带宽度。通过在模拟太阳光照射下催化降解有机染料罗丹明B(RhB)溶液和甲基橙(MO)溶液对合成的样品的光催化活性进行研究。结果表明,这种复合光催化剂在降解罗丹明B和甲基橙的过程中都表现出较强的光催化活性,复合材料样品的光催化活性比单一的材料有所提高,并且g-C3N4质量比例为80%的复合光催化材料样品的光催化活性最好,这是因为两种材料以合适的比例复合能够充分促进光生电子-空穴对的分离。73234
毕业论文关键词 钒酸铋 石墨相氮化碳 复合半导体材料 光催化活性
毕业设计说明书外文摘要
Title Synthesis of BiVO4/g-C3N4 Composite Photocatalyst and their photocatalytic activity
AbstractThe BiVO4 and g-C3N4 composite photocatalysts were obtained through a simple mixing calcination method。 The products were characterized by X-ray diffraction (XRD) for phase identification。 The microstructure of the sample was observed by a transmission electron microscope(TEM)。 The infrared optical were measured by Fourier transform infrared(FT-IR)。 The band gap of the samples were calculated by UV-vis diffuse reflection spectroscopy。 Photocatalytic oxidation ability of the prepared samples were examined by studying the degradation of rhodamine B(RhB) and methyl orange(MO) as target pollutants under simulated solar light。 As a result, the photocatalysts exhibited an enhanced photocatalytic performance in degrading RhB and MO。 The photocatalytic activity of the composite samples were improved than that of the single material,and the best mass ratio of the g-C3N4 is 80%。 The improved photocatalytic activity of the as-prepared composite photocatalyst may be attributed to the enhancement of photo-generated electron-hole separation at the interface。
Keywords BiVO4 g-C3N4 Composite material Photocatalytic activity
目 次
1 绪论 1
1。1 研究背景 1
1。2 半导体光催化剂催化降解有机污染物机理 2
1。3 钒酸铋简介 3
1。4 石墨相氮化碳简介 4
1。5 半导体复合改性机理 4
2 试验方法 6
2。1 试剂 6
2。2 仪器 6
2。3 BiVO4/g-C3N4复合材料的合成 7
2。3。1 BiVO4的合成 7
2。3。2 g-C3N4的合成 7
2。3。3 BiVO4/g-C3N4复合改性 7
2。4 光催化活性评价 7
2。5 样品表征 8
2。6 光催化剂稳定性评价 8
3 结果与讨论 9
3。1 X射线衍射(XRD) 9
3。2 光催化活性实验 BiVO4/氮化碳复合材料的制备及其光催性能研究:http://www.youerw.com/huaxue/lunwen_83515.html