本文针对夜视图像低对比度和低信噪比的特点从硬件和软件两个角度着手改善夜视图像的成像质量。从硬件角度来讲,电子倍增 CCD(EMCCD)通过自带的倍增寄存器有效放大采集到的微小信号,从而实现了较高的对比度和较高的信噪比。而从软件算法的角度,我们采用图像重建算法从被污染图像中恢复原有信息。针对采集夜视图像过程中快门时间长和感光度高等特点带来的图像质量退化,重建算法主要从图像去模糊和图像去噪两方面来改善图像质量,采用了逆卷积算法、 线性非线性滤波器以及软硬阈值小波降噪等算法。此外,我们引入峰值信噪比(PSNR)和结构相似度评价(SSIM)等图像质量评价算法来客观衡量图像质量的变化,对不同重建算法下的图像质量改善程度做出评估。9660
关键词 夜视图像 电子倍增 CCD 图像重建 图像质量评估
Title Night-Vision Image Reconstruction Algorithm
Based on Electron Multiplying CCD
Abstract
Based on the low contrast and low SNR of night vision image, this article
is aimed at enhancing image quality from both hardware and software
aspects. When it comes to hardware, electron multiplying CCD amplifies weak
signals via multiplying registers and improves contrast and SNR as a
result. As to software, we use image reconstruction algorithm to recover
original information from polluted image. For major image recession is
caused by long shutter time and high ISO, the image reconstruction mainly
focuses on image de-blurring and image de-noising. The algorithms of
deconvolution, linear and non-linear filter and hard/soft-thresholding
wavelet de-noising have been adopted. Furthermore, Peak Signal-to-Noise
Ratio(PSNR) and Structural Similarity Index(SSIM) have been introduced to
objectively measure the variation of image quality and accordingly assess
algorithms’ performance.
Keywords Night-Vision Image EMCCD Image Reconstruction
Image Quality Assessment 目 次
1 引言 1
1.1 研究的发展情况和研究现状 1
1.2 课题研究的背景和意义 1
1.3 论文结构和主要研究内容 2
2 电子倍增 CCD 介绍 2
2.1 EMCCD 的结构以及工作原理 . 2
2.2 EMCCD 的噪声特性 . 4
3 图像重建 5
3.1 图像退化的数学模型 6
3.2 图像去模糊 7
3.2.1 逆卷积算法 . 8
3.2.2 文纳滤波方法 . 9
3.2.3 盲去卷积算法 . 10
3.3 图像去噪 11
3.3.1 空间域 . 11
3.3.2 频域降噪 . 13
3.3.3 小波域 . 14
4 图像质量评价标准 . 21
4.1 基于误差灵敏度的图像评价算法 22
4.2 基于结构相似度的图像质量评价 23
5 算法仿真 24
5.1 图像去模糊重建算法仿真 25
5.1.1 有先验知识条件下图像去散焦模糊 . 25
5.1.2 有先验知识条件下图像去运动模糊 26
5.1.3 无先验知识条件下图像去模糊 26
5.2 图像去噪重建算法仿真 27
5.2.1 中值滤波算法仿真 . 27
5.2.2 均值滤波算法仿真 28
5.2.3 频域低通滤波 29
5.2.4 硬阈值小波变换重建 30
5.2.5 软阈值小波变换重建 31 基于电子倍增CCD的夜视图像重建算法:http://www.youerw.com/jisuanji/lunwen_8458.html