葡萄炭疽病菌对苯醚甲环唑敏感性基线建立及抗药性分子机制_毕业论文

毕业论文移动版

毕业论文 > 生物论文 >

葡萄炭疽病菌对苯醚甲环唑敏感性基线建立及抗药性分子机制

摘要:苯醚甲环唑是一种三唑类杀菌剂,具有高效、广谱的抗菌活性。本文建立了葡萄炭疽菌对苯醚甲环唑敏感性基线及抗药性分子机制,为葡萄炭疽病绿色防控奠定理论基础。结果表明:采用菌丝生长速率法建立了葡萄炭疽菌对苯醚甲环唑的敏感性基线,平均EC50值为1.9906±0.04494μg/ml,EC50值分布成单峰曲线;从田间获得了抗苯醚甲环唑的葡萄炭疽病菌,抗性菌株的致病力强于敏感菌株,但是抗性菌株的菌丝生长速率和产孢能力比敏感菌株弱;苯醚甲环唑与丙环唑之间不存在交互抗性,但与咪鲜胺之间存在交互抗性;抗性菌株cyp5 1的编码区有65个核苷酸点突变,其中7个氨基酸密码子发生点突变。26623
毕业论文关键词:苯醚甲环唑;葡萄炭疽病菌;敏感性基线;抗药性分子机制
Baseline sensitivity and molecular mechanism in resistance of Colletotrichum gloeosporioides to difenoconazole
Abstract: Difenoconazole, is a triazole fungicide with a broad-spectrum and high effectiveness. In order to establish the foundation for green chemical strategy in controlling grape anthracnose, the baseline sensitivity and molecular resistance mechanism of Colletotrichum gloeosporioides to difenoconazole were studied. The results shown that baseline sensitivity of C. gloeosporioides was 1.9906±0.04494 µg/mL and the frequency distribution of EC50 values was present as a unimodal curve. Except for more powerful virulence than that of the difenoconazole-sensitive strains, all the difenoconazole-resistant strains from field reduced in mycelial growth and sporulation. Difenoconazole had no cross-resistance with propiconazole, but had positive cross-resistance with prochloraz. Of the 65 nucleotide mutations in the coding domain of the cyp51, seven were amino acid mutation observed in the difenoconazole-resistant strains.
Keywords: Difenoconazole; Colletotrichum gloeosporioides; Biological activity; Baseline sensitivity; Molecular mechanism in resistance 
目  录

摘要1
关键词1
Abstract1
Key words1
前言2
1材料与方法2
1.1供试菌株 2
1.2供试药剂与培养基 2
1.3葡萄炭疽病菌对不同类型杀菌剂的敏感性测定 2
1.4苯醚甲环唑抗、感菌株的生物学特性测定 3
1.4.1菌丝生长速率测定3
1.4.2产孢能力测定3
1.4.3致病力3
1.5苯醚甲环唑抗、感菌株1,4-α脱甲基酶(cyp51)基因的克隆、分析3
1.5.1葡萄炭疽病菌基因组DNA的提取3
1.5.2 苯醚甲环唑抗、感菌株cyp 51基因的克隆及分析3 2结果与分析5   2.1感抗菌株对苯醚甲环唑的EC50测定5
2.2苯醚甲环唑对葡萄炭疽菌的生物学特性比较6
2.3交互抗性8
2.4苯醚甲环唑抗、感菌株1,4-α脱甲基酶(cyp51)基因的克隆、分析9
3讨论 13
致谢14
参考文献15
葡萄炭疽病菌对苯醚甲环唑敏感性基线建立及抗药性分子机制
葡萄炭疽病也称晚腐病,在全国大多数葡萄栽培地区均有分布[2]。葡萄炭疽病的病原菌为胶孢炭疽菌(Colletotrichum gloeosporioides),主要危害着色期和近成熟期的果实,也可危害幼果、叶片、叶柄、新稍、卷须、花穗、穗轴和果梗等,危害初期病斑不明显。果实受害初期,果粒上产生褐色圆形小斑点,后期逐渐扩大凹陷产生轮纹状排列小黑点,即病菌的分生孢子盘,天气潮湿时病斑长出粉红色黏状物,即病菌的分生孢子团,严重时病斑扩展至半个果粒,引起果粒腐烂[1]。长期以来,生产上防治炭疽病的主要是依靠化学防治,但由于炭疽菌具有繁殖速度快、易发生遗传变异和生物适合度高等特性,极易产生抗药性[7]。目前,炭疽菌对多菌灵等杀菌剂已经产生了抗药性,并且炭疽病的多重抗药性问题日益严峻。抗药性的产生致使杀菌剂对炭疽病的防效大幅下降,甚至失效。因此,防治炭疽病的新药剂的筛选成为一个迫在眉睫的课题。苯醚甲环唑(Difenoconazole)一种高效广谱的三唑类杀菌剂,化学名称为顺,反-3- 氯-4-[4-甲-2-(1H-1,2,4- 三唑 -1- 基甲基)-1 ,3-二噁戊烷-2-基]苯基4-氯苯基(顺,反比例约为 45:55)。苯醚甲环唑作用机制主要抑制病菌细胞麦角甾醇的生物合成,从而破坏细胞膜结构与功能,主要用于果树、蔬菜、小麦、马铃薯、豆类、瓜类等作物,对蔬菜和瓜果等多种真菌性病害具有很好的保护和治疗作用。研究葡萄炭疽病对苯醚甲环唑的生物学活性、建立敏感性基线、分析抗药性机制对该药剂的安全和合理使用提供科学指导具有重要的现实意义。 (责任编辑:qin)