数学建模思想在数学教学中的应用
时间:2020-03-20 13:36 来源:毕业论文 作者:毕业论文 点击:次
摘要近年来,数学建模思想在数学课程教学教学中应用备受关注,成为近年来教育界的热门话题。数学模型,就是将实际问题用数学语言、符号或数量关系、图形呈现,从而解决。具有精确、直观、简洁的特点。46778 2011版《数学课程标准》中多次提出了数学建模,强调数学模型思想的重要性。数学模型思想在小学数学教学中的应用,能有效培养学生的创新意识和应用意识,提升学生解决实际问题的能力。可以看出,将数学模型思想融入到小学数学教学中有非常重要意义。 本文以数学基础知识为基础,以数学教学为平台,分析数学建模的基本步骤,研究数学模型思想在小学数学教学中的作用以及在小学数学教学中应用数学建模思想的方法。结合数学课本,结合“植树问题”“图形中的规律”等教学案例进行解说。 In recent years, the application of mathematical modeling thought has attracted much attention in the mathematics teaching in the teaching, has become a hot topic in the field of education in recent years. The mathematical model, is the practical problems in mathematical language, symbols, or the relationship between the number of graphics, so as to solve. Has the characteristics of accurate, intuitive and concise. The 2011 edition of "mathematics curriculum standard" proposed in many mathematical modeling, stress the importance of mathematical model thinking. The application of mathematical model in primary school mathematics teaching, can effectively cultivate students' innovation consciousness and consciousness, improve the students "ability to solve practical problems. As can be seen, the idea of mathematical modeling into the mathematics teaching in primary school has a very important significance. This paper is based on the basic knowledge of mathematics, to mathematical teaching platform, the basic steps of mathematical modeling analysis, to study the effect of mathematical model thinking in math teaching in primary school and the method of application of mathematical modeling in mathematics teaching in primary school. Combined with the mathematics textbook, combined with the "tree planting" graphics "in laws" teaching case to explain. 毕业论文关键词:数学建模; 数学建模思想; 小学数学教学 Keyword: Mathematical modeling; The idea of mathematical modeling; Mathematics teaching in primary school 目 录 1. 研究背景及意义 4 2. 数学模型与数学建模思想 5 2.1 概念的解释和理解 5 2.2 数学建模的基本步骤 5 3. 数学模型思想在小学数学教学的作用 7 3.1 数学模型思想在小学数学教学中的作用 7 3.2 数学模型思想融入小学数学教学的必要性 8 4. 小学数学教学中渗透数学建模思想的方法 8 5. 小学生如何形成数学建模意识 9 5.1 创建情境 感知建模 9 5.2 参与探究 构建模型 10 5.3 解决问题 应用模型 12 6. 案例 12 6.1 植树问题 12 6.2 图形中的规律 15 7. 小结 18 1. 研究背景及意义 数学,可以培养学生的思维能力,更好地帮助人们去探索客观世界。数学模型是对现实世界的体现,通过数学模型可以以数学的方式认识世界。 (责任编辑:qin) |