摘 要:在数学分析中,余元公式具有独特的地位,在很多科学领域中都有重要作用.本文利用欧拉积分及无穷级数的运算对余元公式予以证明,并给出几个运用余元公式的例子.
毕业论文关键词:余元公式,Euler积分,一致收敛,余弦函数59487
Abstract: In mathematical analysis,the formula of complement variable has a unique position,and plays an important role in many fields of science. In this paper,using the Euler integral and infinite series, we have proven the formula , and given its some applicational examples.
Keyword: formula of complement variable, euler integral, uniform convergence, the cosine function
目 录
1引言及其预备知识4
1.1引言…4
1.2预备知识…4
2 余元公式4
3 余元公式的证明…4
4 例题7
例1 7
例2 7
例 37
例4 9
例5 9
5 参考文献12
对余元公式及其应用的讨论:http://www.youerw.com/shuxue/lunwen_64731.html